
ECD Master Thesis Report

Textual Data Clustering and Cluster Naming

Marian-Andrei RIZOIU

05/06/2009

Supervision:

Julien VELCIN, laboratory ERIC, Univ. Lumière Lyon2, France
Jean-Huges CHAUCHAT, laboratory ERIC, Univ. Lumière Lyon2, France
Ştefan TRĂUŞAN-MATU, Univ. Politehnica Bucureşti, România

Location: Laboratory ERIC, Univ. Lumière Lyon2

Abstract:

In this paper we present the research a way of clustering textual data based on the the-
matics approached in the texts and a manner of finding a suitable, humanly readable
name for each group. Previous research done on the field of data clustering and the-
matic extraction is briefly presented, along with observations of their suitability for the
intended purpose, and then we propose an approach to combine the ones that we con-
sider that maximize the effectiveness of the process. Our work is intended for general
text files (newspaper articles, forums, chat logs) and takes into account the fact that
a text can naturally have multiple thematics, so the clustering must be done in such a
fashion that this condition is respected (a text can be part of more than one group).

The main idea is to regroup the textual documents using different term weighting schemes
(a comparison of which will be presented later in the paper) and from each cluster ex-
tract the frequent keyphrases and associate them to the cluster’s centroid.

A practical implementation of the algorithm has also been prepared and an expert eval-
uation was performed to assess the results.

Résumé :

Dans ce mémoire, nous présentons la recherche que nous avons mené dans le domaine
du regroupement de données textuelles selon la thématique développée dans les textes
en question et dans celui de la caractérisation de ces groupes d’une façon convenable et
humainement lisible. Nous présentons brièvement les recherches des antérieures dans
le domaine du regroupement de données et dans celui de l’extraction thématiques. Nous
expliquons comment ajuster ces résultats à notre problématique, et nous proposons une
facon de combiner les deux approches afin de maximiser l’efficacité de la procédure.
Nous travaillons avec des fichiers textuels généraux (articles de journaux, forums, logs
de chat), tout en considérant le fait qu’un texte peut naturellement avoir plusieurs
thématiques (un texte est susceptible de faire partie de plusieurs groupes).

Au-delà de ce travail, nous utilisons plusieurs mesures pour regrouper les documents
textuels (une comparaison est présentée plus tard dans ce dossier), et les motifs fréquents
sont extraits de chaque groupe puis associés aux centres des groupes.

On a également préparé une implémentation pratique de l’algorithme, et une évaluation
basée sur des experts a été utilisée pour juger des résultats obtenus.

2

Contents

1 Hosting Institution 1

2 Acknowledgments 1

3 Introduction 2

4 State of the Art 5
4.1 Clustering of the documents . 5

4.1.1 Singular Value Decomposition . 5
4.1.2 Latent Dirichlet allocation . 6
4.1.3 OKM (Overlapping K-Means) . 7

4.2 Extracting the keyphrases . 8
4.2.1 Linguistic approaches . 8
4.2.2 Numerical approaches . 8
4.2.3 Hybrid approaches . 9

4.3 Approaches that deal both with clustering and topic extraction 10

5 Our approach 11
5.1 Vector Space Model . 12
5.2 Pretreatement . 13
5.3 Clustering . 13
5.4 Keyphrase Extraction. Name candidates . 14

5.4.1 Suffix Tree Construction . 14
5.4.2 Complete Phrase Discovery . 15

5.5 Associating names to clusters . 16
5.6 Application Design . 16

6 Evaluation 17
6.1 Clustering evaluation . 17
6.2 Name Extraction evaluation . 19
6.3 Sample results . 20

7 Conclusions and Perspectives 21

A Side-by-side Precision and Recall, OKM vs. KMeans. II

B Cluster Name Quality. Forum Commémoration III

1 Hosting Institution

This paper presents the conclusions of the research internship, which represents the final step towards
completing Master 2 ECD studies. (Extraction de Connaissances à partir de Données). The Master is the
result of an international collaboration of Universities in France with partner Universities in Romania,
Vietnam, Canada. The internship is part of a cooperation between the University Politehnica Bucharest
and the University Lumière Lyon2, ERIC laboratory, the supervision team being composed by two French
professors and one Romanian. While the actual work was performed in the laboratory ERIC at Lyon,
close contacts were kept with the Romanian part also.

Being an ERASMUS exchange student, doing a double diploma, means that the work will be presented
and evaluated by committees both in France and in Romania.

The work is related to the research work performed by Mathilde Forestier which deals with the analysis
of thematics in forums and can also be used in project of the enterprise Between and the thesis of Anna
Stavrianou: the analysis of online chats. That created the premises of a very tight cooperation between
the author of the paper and the PhD students, as well as with the representative of the Between Project
Enterprise.

2 Acknowledgments

During my staying in Lyon and my work on the internship I had the great pleasure of working and inter-
acting with the people from the ERIC laboratory, all of whom have actively supported and encouraged
me during the work and adaptation to a totally new and different society and way of thinking and living.

First of all I would like to give my sincere appreciations to the professors from Master ECD with whom
I had the pleasure to study, for introducing me to this new and fascinating domain of Data Mining and
Artificial Intelligence.

I would like to give special thanks to Mr. Julien VELCIN and Mr. Jean-Hugues CHAUCHAT for
their continuous guidance, patience and good will without which I could hardly finish the work. I also
would like to mention their heroic efforts in understanding my terrible French accent. Also PhD students
Mathilde FORESTIER and Anna STAVRIANOU for their continuous flow of ideas and help.

And last, but not least, to Mr. Djamel ZIGHED, head of the ERIC laboratory, for his continuous
interest and prompt help to all the problems I was faced.

1

3 Introduction

The world today is faced with a challenge. It is an old acquaintance, but conditions have changed since
we first encountered it: “information”. Since humanity always felt the hunger for discovering the world
around it, information can be found through out our history, from the beginning of the most ancient
cultures. It has always been stored in libraries, carefully indexed and sorted by librarians. Its support
(paper, tablets, papyrus) has always limited the amount of stored information so that a team of trained
specialist could always deal with it.

But all changed in the last decades. The new storing technologies, the most important of all being
the INTERNET and magnetic drives, made information storing notably easier, and the sharing capabili-
ties of Internet encouraged people to create amount of information never seen before. And the thematics
approached by the new information are more diverse: if at the beginning information would be philosophy,
religion, history or art, lately huge quantities of personal experience, debates, social networks emerged.
So it is safe to say that information increases at an exponential rate each year.

The new reality made impossible for human expert to manually sort out and inventor every single piece
of knowledge. So this was the birth time of unstructured information, as opposed to structured
one, which is manually maintained. This unstructured information is in the form of natural language
text (texts that have no predefined structure - as opposed to tables for example) and usually found on
various pages on the Internet. Unstructured information can be contained in forums, chat logs, blogs.

As the economical importance of the new type of information rose and in ten years (1996 - 2006) sur-
passed the information manually indexed - through the new emergence of profits by publicity on social
networks, etc - so did the need of finding a way to automatize the process of Information Retrieval from
Natural Language texts.

The purpose of this paper is to study the ways in which information can be retrieved from unstruc-
tured texts (natural language texts). Basically, by means of Unsupervised Machine Learning, we are
searching for a way of dividing a set of texts into groups that are similar in terms of their thematics,
meaning that all the texts in a group approach the same domain and there is a visible distinction between
them and the texts from the other groups.

After this division is done, we are looking for a way of assigning to each group a meaningful name
that best describes the content. In this way, the user can be presented not only with a partition of the
texts, but also can easily identify the ones he is interested in. The work can also be used to identify the
thematics approached in a group of texts: for example, in a forum, it is well known that multiple threads
appear, resulting in parallel discussions about different subjects. Through the usage of our work, the
thematics approached can be identified and the lines corresponding to each of them could be isolated.

There are several problems that present themselves. First of all, there is the pertinent observation
in [4] that states that natural language texts can approach multiple domains. For example, a newspaper
article talking about the economical consequences of a political decision can be considered both in the
economical group, as well as in the politics group. Translated into our terms, that means that a text can
be part of more than one group, the clustering algorithm must allow overlapping.

The second problem encountered was naming the groups: what makes a good name for groups? In
[18] the problem is presented in detail. One of the first things that must be taken into consideration is
that words have the propriety of polysemy, meaning that the same word can have different meaning in
different contexts. For example each of the words “data” and “mining” have different words then the
expression “data mining”. Incompletely extracted phrases can cause ambiguity. Our thematics extraction
algorithm must be able to take this observation into consideration.

2

Figure 1: Market share of structured and unstructured information in 1996.

Figure 2: Market share of structured and unstructured information in 2006.

Also, prepositions and articles have a fundamental role in human comprehension of names, a correctly
formulated phrase has more chances of being properly interpreted than a list of words. Example: “tales
of war” vs. “tales, war”

This work was performed having in mind a couple of restrictions:

• to have an automatic algorithm, one which requires as little intervention as possible from the user;

• to be able to adapt to other languages of the text with minimal intervention and change;

• to be able to approach any thematic or field - not to be specialized on a certain domain;

• to be able to work with any kind of texts: scientific articles, newspaper articles, log chats, forums,
etc. That implies that the chosen algorithm must be robust and noise resistant, as it is known that
in non-formal discussions and writing people have the tendency of not respecting all the rules of the
language. Writing mistakes often occur (eg. misspelling, not using the accent in French language,
etc).

There are many ways to extract keyphrases from text, some of which will be presented in the next
chapters, some linguistic, other statistical. In our work we chose a statistical one because they are less
dependent on the language (only the pretreatment still requires language selection) and are more stable
with informal texts than the linguistic ones. [2]

What is new in our work:

• an overlapping clustering solution for the topic extraction. While the literature presents
solutions for topic extraction from a set of documents, they usually create crisp clusters [1], [9],

3

[10]. LINGO [16] outputs overlapping groups, but it is rather specialized for Search Engine result
clustering.

• the experimentations. The application was designed in such a manner that would allow us
to experiments over several data sets in two languages (French and English) using different term
weighting schemes (see Section 5).

• comparing with other algorithms. The application design was created bearing in mind an
interoperability with other Data Mining platforms (eg. WEKA). This will allow us to use along
with our OKM [4], implementations of other clustering algorithms, in order to be able to compare
performances of both the regrouping phase and that of the cluster naming.

• an expert based keyphrase evaluation.We propose an evaluation scheme that, based on grades
given by the expert to each extracted keyphrase, calculate a general score of the obtained partition.
This way we can compare the performances of different term weighting schemes and clustering
algorithms and their influence on the naming process.

Outline of the clustering algorithm. The process of clustering and the one of naming are both
crucial operations, but different authors propose different balances between the two. For example in [1],
[10] and [15] the accent falls on the keyphrase discovery stage, while in [9] a bigger importance is given to
the clustering (regrouping) phase. We have chosen the second one. As result of the discussion presented
later in the document, we have chosen to first do the clustering of the documents, after a pretreatment
phase, using the algorithm OKM, presented in [4]. OKM stands for Overlapping K-Means and is similar
to the well known K-Means algorithm, the major difference being that it allows a document to belong to
more than one group. This feature makes it more suitable to use with textual data.

Outline of the thematic extraction. Thematic extraction from Natural Language Texts is a very
active research domain, a lot of work being done on it in the last two decades. The results of this work
are very well synthesized in [18]. Linguistic, statistical and hybrid solutions exist for the problem. Some
of the are completely automated, like LocalMaxs [7] and [8], CorePhrase [10], Armil [9], XTRACT
[19], while other use expert intervention to validate at each step the extracted collocations, ESATEC [2]
and EXIT [18]. We have chose a Suffix Tree based [15] [16], automated , statistical approach to extract
frequent keyphrases from the already partitioned clusters. This way of extracting keyphrases is based on
the propriety of completeness.

Outline of the name associating phase. Once the clustering of the document is complete and
frequent keyphrases are extracted from each group, forming the candidate set, we must now chose one
of them to be the name of the cluster. In ARMIL [9], Information Gain is used to associate the names.
In our work we decided to consider the candidates as pseudo-documents (using the same measure as the
one in the clustering process) and calculate the distance (document similarity) between them and the
center of the group (the centroid). The one that is most similar to the center is chosen as name. In this
manner, candidates comprised only from words that do not bring any information (“analyst said”, “two
months”) are filtered out from the rest.

Outline of the paper. The reminder of the document is structured as follows: Section 4 presents the
bibliographical study on the existing solutions, both on overlapping clustering algorithms and keyphrase
extraction, Section 5 contains the presentation of our approach. In Section 6 the evaluation and practical
results of our work are discussed and in Section 7 we present the conclusions of our work and some future
perspectives.

4

4 State of the Art

In the last two decades, the domain of automatic text clustering based on the thematics and thematic
extraction has seen a lot of work. Many authors proposed different ways of achieving the goal. In
preparation for our thesis we concentrated on three types of work:

• Papers that deal with clustering - we were mainly interested in overlapping clustering algorithms
[4], [6], [5], [3] ;

• Work in the keyphrase extraction field [2], [7], [8], [14], [19] ;

• Algorithms that dealt with the clustering part as well as thematic extraction, this work being the
closest to the one approached in this thesis [15]. [16], [1], [9], [10].

The authors of [9] observed that the problem is naturally composed of two subproblems: the clustering
of the documents and the keyphrases extraction from the corpus. In the light of that remark, our
bibliographical research was not directed only toward papers that approach a similar thematic as ours,
but also on work performed on both of the subproblems.

4.1 Clustering of the documents

K-Means [12] is one of the most well-known clustering algorithm. Extensive work was done in the
subject and it is proven that good result are obtained with it. It consists in constructing a collection of
disjointed classes forming a partition of the dataset, by optimizing an objective criteria. Though it was
successfully used for textual data, one particularity of Natural Language Texts rules it out of our
candidates list: in these kind of text, usually, more than one thematic is approached (the same text can
talk about more subjects, ex: politics and economics). Therefore, we are looking for ways of obtaining
non-disjointed classes - Overlapping Clustering.

Most of the related work [10], [2] performs crisp clustering on the textual data, therefore we consider
that finding overlapping classes would improve the user experience and results quality.

In the reminder of this sub-chapter we present three algorithms that are candidates for our cluster-
ing phase. Still, we consider to necessary to make a distinction between algorithms that output an
overlapping partition and those whose result are more of a “fuzzy” approach.

In fuzzy clustering, each document has a degree of belonging to all clusters, as in fuzzy logic, rather
than belonging completely to just one cluster. Thus, documents on the edge of a cluster, may be in
the cluster to a lesser degree than documents in the center of cluster. For each document x, we have a
coefficient giving the degree (probability) of being in the kth cluster uk(x).

Still, fuzzy logic clustering algorithms, can be adapted to output an overlapping partition by choosing a
threshold and considering that if uk(x) > threshold than the document is in the kth cluster.

4.1.1 Singular Value Decomposition

Singular Value Decomposition is the underlying mathematical ground behind Latent Semantic Analysis
(described in [15]). Although LSA (Latent Semantic Analysis) can be used as a statistical topic discovery
algorithm [18], in LINGO [15] it is used also for the clustering purpose.

The main idea of the algorithm is to decompose the term/document matrix (all the documents translated
into Space Vector Model) in a product of three matrices: A = USV T . U and V are orthogonal matrices,
containing the left and right singular vector of A, and S a diagonal matrix, having the singular values
of A ordered decreasingly. Figure 3 shows the well-known schema of matrix decomposition, with r being

5

Figure 3: Singular Value Decomposition. A is the original corpus matrix.

the rank of matrix A [18]

If we keep only the k highest ranking singular values and eliminate the rest, along with the corre-
sponding columns in U and lines in V , the product Ak = USV T is also know as the k-approximation of A.

It is well-known that most clustering algorithms take the number of clusters as a parameters, which
is arbitrarily set by expert. The SVD approach allows an automatic determination of the number of
clusters, based on the value of singular values of the original matrix. In LINGO, the Frobenius norm of
the A and Ak matrices is used to calculate the percentage distance between the original term / document
matrix and its approximation. This way an aproximation for k can be found.

Once the number of classes has been chosen, the corresponding columns in U create an orthogonal
basis for the document space. According to mathematical vectorial space theory, every component of the
space, in our case every document, can be expressed as a weighted sum of the elements of the base.

di = α1e1 + α2e2 + ... + αkek

The elements el, l ∈ {1..k} of the base can be considered as the centers of the classes and the formula
above resembles a fuzzy approach, the document di having the probability αj of belonging to the jth

cluster.

4.1.2 Latent Dirichlet allocation

Latent Dirichlet Allocation [3] is a constructive model. It considers documents as collections of words
and models each word in a document as a sample from a mixture model, where the mixture components
are representations of “topics”. Thus each word is generated from a single topic, and different words in
a document may be generated from different topics. Each document is represented as a list of mixing
proportions for these mixture components and thereby reduced to a probability distribution on a fixed
set of topics.

LDA is similar to probabilistic latent semantic analysis (pLSA), except that in LDA the topic
distribution is assumed to have a Dirichlet prior. In practice, this results in more reasonable mixtures of
topics in a document.

An LDA model starts with a set of topics. Each of this topics has probabilities of generating various
words. Words without special relevance, like articles and prepositions, will have roughly even probabil-
ity between classes (or can be placed into a separate category). A document is generated by picking a
distribution over topics and given this distribution, picking the topic of each specific word. Then words
are generated given their topics.

6

Once the distribution has been established for each document in the collection, the ones that share
one common topic can be placed in the same group. As each document is a mixture of different topics,
in the clustering process, the same document can be place in more that one group, though resulting in a
Overlapping Clustering Process.

Viewed from our work’s point of view, this method presents some disadvantages:

• It is a complex mathematical model, that consideres each document a mixture of many topics.
While this could be good for explaining the documents, in the case of clustering, it would mean
that each document belongs, in a certain percentage, to many clusters (fuzzy approach). A suitable
method should be devised that could pick only part of the clusters for each document;

• This method does not present a center for each cluster, but a distribution of the document over the
topics. This is not very readable for the user and makes associating a name to a cluster harder;

• Its complex mathematical model makes implementation difficult and error prone. Also, if used in
the above manner, the clustering process would not make use of all the informations that it provides
(mainly the probabilistic distribution of the topics and the fact that it can identify words in the
document according to topics).

Due to this observations, the authors of this paper considered other solutions for the clustering phase.

4.1.3 OKM (Overlapping K-Means)

As the name suggests, OKM [4] is an extension of the well-known K-Means. It shares the general
outline of the algorithm, trying to minimize an objective function. It does so by initially randomly
choosing k centroids (centers) from the data set, and then iterating these two steps:

1. Assigning the documents to the clusters;

2. Recalculating the clusters, based on the new configuration;

until the objective value reaches a local minimum.

The main difference in the OKM algorithm compared to K-Means is that a document can be assigned to
multiple clusters. If in K-Means each document was assigned to the centroid that was closest to him, in
terms of cosine distance (detailed in subsection 5.1), OKM calculates an image of the centroids, adding
the document to clusters so that the distance between it and its image is minimal. This image is the
Gravity Center of the assigned centroids.

Therefore, the function that OKM tries to minimize is the distortion in the dataset:

distorsion (Π) =
1

NK

N∑
i=1

d
(
X(i), Z(i)

)2
where Z(i) represents its image.

While OKM inherits from K-Means its powerful dependence on the initialization - the algorithm goes
towards a local maximum - and the number of clusters must be arbitrary specified by the expert, its lin-
ear execution time, its performances [6] and simplicity make it a perfect candidate for our clustering phase.

In [5] is presented wOKM, a weighted version of OKM, that uses weights internally and achieves even
better performances in terms of precision, recall and FScore. Updating the clustering algorithm to
wOKM is a future perspective of this work.

7

4.2 Extracting the keyphrases

From the clustering techniques, the hierarchical clustering is ideal for cluster content presentation tools,
mainly interactive visualization and browsing [17]. But often, users need more than that, the need a
description of the groups, so that they can see from one look what it is about and decide if it is important
or not. That is what emerged the need of adding meaningful descriptions to the clusters.

A meaningful, human readable name is a complete phrase, that contains all the words that have a
special meaning together (like “data mining”) and all the prepositions and articles that make sens to
the human reader (“of” in “Ministry of Internal Affairs”). A keyphrase is “a sequence of one or more
words that is considered highly relevant as a whole”, while a keyword is “a single word that is highly
relevant” [10].

In our search for ways of extracting such a name, we directed our research towards topic extraction
algorithms, because most of them concentrate on presenting the used with a coherent, readable expres-
sion.

In [10], keyphrase extraction algorithms are divided into two categories:

• Those that construct the keyphrases from a single document, which is usually a supervised learn-
ing task, often regarded as a more intelligent way of summarizing the text, but more difficult in
implementing. Examples: ESATEC [2], EXIT [18], XTRACT [19]

• Those that extract them from a set of documents, which is an unsupervised techniques, trying to
discover the topics, rather that learn from examples. While this type of algorithms can not find
keyphrases that are not in the texts of the documents, they can be used in conjuncture with the
clustering algorithm in order to improve their performances. Examples: CorePhrase [10], Armil
[9], SuffixTree Extraction [15].

In [18], topic extraction algorithms are divided into 3 categories, based on their approach: linguistic,
numeric and hybrid.

4.2.1 Linguistic approaches

In [18], 3 linguistic systems are presented: TERMINO, LEXTER and INTEX & FASTR.

All these systems make use of morphological and syntactic informations about the words in the texts. The
POS tagger (Part-Of-Speech) tries to recognize whether the word is a noun, adjective, verb or adverb,
and tries to characterize it morphologically (number, person, mode, time etc). Based on this information,
the lematisation process extract the radix of the word (masculine single - for nouns, infinitive - for verbs).

With the texts tagged, each system has each own approach toward discovering the keyprases. In TER-
MINO, a lexical-syntactic analyzer is used to describe the sentences, and then certain patterns are used to
uncover the keyphrases (ex: <Head> <Prepositional Group> <Adjectival Group>). LEXTER uses the
morphological information to extract from the text nominal groups and then searches for dis-ambiguous
maximal nominal groups.

4.2.2 Numerical approaches

These algorithms make use only of numerical (statistical) informations in order to discover the topics.
For each couple of words in the text, the Mutual Information is calculated. This allows to measure the
dependence between the two words in the binary collocation, also called bigram. The Mutual Information
is given the formula: [18]

IM(x, y) =
P (x, y)

P (x)P (y)

8

where P (x) and P (y) are the probabilities that the word x and, respectively, y appear in the text, while
P (x, y) represents the probability of the words x and y appearing together as neighbors. This allow us
to calculate the dependence between 2 words that are one next to the other or in a window of specified
dimensions. In [1] a windows of dimension 11 is considered around a word (5 words before + word + 5
words after).

Once we have the tool for extracting bigrams from the text, some authors (EXIT [18], ESATEC
[2]) propose ways of constructing ngrams, by combining iteratively the bigrams or adding the an existing
(n-1)gram another word, trying to obtain longer collocations that have a high Mutual Information score.

There were many statistical measure proposed to calculate the strength of the relationship between
2 words. In [1] the algorithms first finds a set of terms that are frequent (over a minimum threshold).
Than a set of pair of these terms is created, retaining only the ones that score a minimum frequency. Only
for these pairs, the β-similarity is calculated and the set of documents for which the pair is representative
is constructed. This algorithm uses the topic extraction phase for the clustering phase.

In [7], [8] , the authors consider that a special “glue” exists between words that make them have
a sens together. LocalMaxs is used in conjuncture with the Symmetric Conditional Probability
(SCP) measure to extract Continuous Multiple Word Units and with Mutual Expectation (ME)
measure for extracting Non-Continuous Multiple Word Units.

[14] starts from the idea that all ngrams can be constructed from bigrams and it is, therefore, essential
to better understanding the impact of the measure used on the algorithm’s performance. Experiments
are performed on some of the most known and used measure’s performances , judging by their ability to
identify lexically associated bigrams. The measures compared are: t-score, Pearson’s χ-square test,
log-likelihood ratio, pointwise mutual information and mutual dependency.

There are other approaches that do not rely on bigram detection and ngram construction. In CorePhrase
[10] keyphrases are considered to naturally lie at the intersection of the document cluster. The CorePhrase
algorithm compares every pair of documents to extract matching phrases. It employs a document phrase
indexing graph structure, known as the Document Index Graph (DIG). It keep a cumulative graph
representing currently processed documents. Upon introducing a new document, its subgraph is matched
with the existing cumulative graph to extract the matching phrases between the new document and all
previous documents. The graph maintains complete phrase structure identifying the containing document
and phrase location, so cycles can be uniquely identified. Simultaneously, it calculates some predefined
phrase featured that are used for later ranking.

In LINGO [15], [16], a Suffix Tree based keyphrase discovery is used. The algorithm tries to avoid
extracting incomplete phrases (like “President Nicolas” instead of “President Nicolas Sarkozy”) which
are often meaningless, it uses the notion of phrase completeness.

A phrase is complete if and only if all its components appear together in all occurrences of the phrase.
For example, is the phrase “President Nicolas” is followed in all occurrences by the term “Sarkozy”, than
is it not a complete phrase. Starting from this definition, right and left completeness can be defined (the
example above is left complete, but not right complete). Using a Suffix Tree data structure, the complete
phrases can be detected and the ones that occur a minimum number of times (frequent keyphrases) create
the candidate set for the topics. A more detailed explanation of this approach is presented in Chapter 5.

4.2.3 Hybrid approaches

An hybrid system is usually adding linguistic information to an essentially numerical system or adding
numeric (statistical) information to a essentially linguistic system. This process usually ameliorates the
results.

9

It is well-known that statistical systems (like those based on Bayesian networks) produce noisy results in
the field of Information Retrieval [2], meaning that among the extracted candidates, most of them pass
the frequency threshold and get good scores, but they are uninteresting from the topics point of view.
Such expressions can be comprised of common words (articles, prepositions, certain verbs, etc) like “he
responded that” or “the biggest part of the”, and they bring no new information. Such phrases should
be eliminated. For that, linguistic filters are very useful.

When revising the linguistic methods, we have seen that some of them rely of certain keyphrase for-
mats (like <Subject> <Verb> or <Verb> <Adverb>) to construct the result. A morphological and
syntactic tagger could be used as a final phase to filter out the noise from the candidates set resulted
from statistical extraction.

From such a filter benefits the system XTRACT [19], [18] which is comprised of 3 phases. In the
first phase, bigrams are extracted from a grammatically tagger corpus, using an eleven words window.
The next phase consists in extracting longer phrases if they are frequent in the text. These phrases are
called rigid noun phrases.

The third phase is the linguistic phase. It consists in associating a syntactic etiquette to the extracted
bigrams (<Noun> <Verb>, <Adjective> <Noun>), and for each bigram associate longer phrases
containing the ngrams obtained at the second phase.

4.3 Approaches that deal both with clustering and topic extraction

Some of the systems presented so far deal both with clustering textual data and extracting topics. While
both phases are of crucial importance, different authors treat them differently. Some consider the the-
matic extraction more important and start with keyprase discovery and from these candidates perform
the actual data clustering (seen in [1], [10], [15], [16]), while others start with the clustering process and
from the resulted clusters proceed with extracting the keyphrases [9].

In LINGO [15], [16], the algorithm starts by extracting the complete phrases and then uses a Singu-
lar Value Decomposition process to identify the basis of the vectorial space (which can be considered
as centers of the groups). Using this vectors, the candidates for group names are chosen and finally
documents are assigned to the groups, based on their similarity to the chosen names.

A somewhat similar approach is presented in [1]. Here, bigrams are extracted from the text, with a
5 term window size. After calculating the β-similarity, the set of documents for which the bigram is
representative is constructed. The downside of this method is that only bigrams (two words collocations)
are extracted.

CorePhrase [10] uses a phrase-based indexing model to describe the documents. Keyphrases are obtained
by intersecting documents and a graph of processed documents is maintained. Also, phrase features are
calculated for later ranking.

Armil [9] starts by clustering the documents using a M-FPF (Modified Furthest-Point-First) algorithm,
which resembles K-Means method, but in which no centroids are calculated. Centroids tend to be dense
vectors and working with them can be computationally costly. M-FPF avoids that by calculating the
intra-cluster variance using the distance between each pair of documents, From the extracted clusters,
thematics are extracted, using the Information Gain, taking into consideration both the intra and the
inter-cluster variance.

10

Figure 4: Streamlined schema of our algorithm.

5 Our approach

While keyphrase extraction based on linguistic approaches do succeed in obtaining less noisy output,
they are also vulnerable to multilingual corpora and neologisms. They also have the tendency of being
adapted to stereotypical texts (texts from a specified narrow field) [2].

In [18] another two reasons that advantage the numerical approaches are presented:

• Although they have the tendency of omitting rare terms (mainly those that appear in the corpus
only once), experience has shown that more often the rare terms are in fact incorrect terms. So not
taking into account phrases that contain these terms actually improves the overall quality of the
extracted keyphrases. This fact privileges the precision in the detriment of recall.

• The use of linguistic methods lead to almost exponential explosion of the numbers of collocations
extracted when the size of the corpus increases. That is why usage of method based only on
linguistic information could prove prohibitive.

To this argumentation, we dare to add another reason. Complex approaches, based on constructive
methods and/or linguistic information are usually designed to extract the thematics from one document.
They try to reject meaningless phrases (those that bring no new information) based on special phrase
layout. But they do not make use of the result of the clustering process.

We believe that once the clustering has been performed and the centers of the classes obtained, we
could use this information to filter out the noise from the keyphrase candidate set. While centroids
(center of classes) are the essence of the documents in those classes, choosing the candidates that are
closest to them naturally eliminates phrases that are too general.

For example: in a document group that talks mainly about politics, the most important terms (mea-
sured with a term weighting scheme) should naturally be “parliament”, “govern”, “president”, “party”,
“politics” etc. When calculating the similarity (cosine similarity) between this centroid and phrase
candidates, is is natural that a candidate that contains as many of those words would be favored. “Pres-
idential elections” phrase would clearly scored higher than “as a matter of fact the” phrase.

In the light of this observation, we chosen to give the clustering process a higher importance and perform
it first. Once the clusters are created, starting from each one of them, through statistical methods, we
create a candidate set of frequent keyphrases. And finally, by comparison with the center of the class, we

11

chose the name, as the highest rated.

For the clustering phase, we have chosen OKM (Overlapping K-Means) [4] algorithm because it
was specially designed for overlapping clustering (one of our conditions) and because its proven effective-
ness when working with textual data. As for the topic extraction phase, from the statistical methods
presented, we chose the Suffix Tree based [15] approach, for its ability to extract the phrases from
raw (untreated text), language independence, linear execution time and the power to extract humanly
readable phrases.

5.1 Vector Space Model

Various models have been proposed for modeling the information in Information Retrieval systems:
Boolean Model compares True / False query statement with the word set that describes a document,
Probabilistic Model calculates the relevance probabilities for the documents in the set. But the model
that is most widely used in modern clustering algorithms is Vector Space Model.

In this model, each document is represented as multidimensional vector. Each dimension is a keyword or a
term and its value associated to a document is directly proportional on the degree of relationship between
them. There are 4 major ways of measuring this relationship degree, also known as term weighting
schemes.

1. Presence / Absence. It is also known as binary weighting [16] and it is the simplest way to
measure the appartenance of a word to a document. Its mathematical formula is:

ai,j =

{
1 if term i is found in document j;
0 otherwise.

In [15] is shown that this scheme can only show if a word is related to a document, but does not
measure the strength of the relationship.

2. Term Frequency. Or term count. It is the number of times a given term appears in a document.
While this is a better measure of the relationship between the term (word) and the document, this
scheme has the tendency of favoring longer documents. In order to prevent that, normalization is
usually used.

TFi,j =
ni,j∑
k nk,j

where ni,j is the number of occurrences of the considered term (ti) in document dj , and the denom-
inator is the sum of number of occurrences of all terms in document dj .

3. Inverse Document Frequency. Is a measure of the general importance of a term in the whole
corpus. It expresses the idea that a word should be less important if it appears in many documents.
In this way very common words, as prepositions, articles and certain verbs and adjectives could be
filtered out or, at least, given less importance.

IDFi = log
|D|

| {d | ti ∈ d} |

where |D| is the total number of documents in the collection and | {d | ti ∈ d} | is the total number
of documents where the term ti appers. Special attention should be given to situations where the
word doen’t appear in any documents (division by zero). The logarithm is used in order to reduce
the influence of IDF in TfxIDF scheme (next), so that a balance is achieved.

4. TFxIDF. Is the most used scheme in Information Retrieval. It is the product of Term Frequency
and Inverse Document Frequency.

TFxIDFi,j = TFi,j ∗ IDFi

12

This scheme aims at balancing local and global occurrences. A high weight in TFxIDF is reached
by a high term frequency (in the given document) and a low frequency of the term in the whole
collection of documents. This weighting scheme hence tends to filter out common terms.

Once that documents were translated into Space Vector Model, using one of the schemes presented
above, the similarity between two documents is usually calculated using the cosine distance.

similarity(a, b) = cos(~a,~b) =

∑t
i=1 ai,jbi,j√∑t

i=1 ai,j

√∑t
i=1 bi,j

(1)

which can be interpreted as the geometrical angle between the vectors in the multidimensional space.

5.2 Pretreatement

Pretreatment is an important part of the algorithm. It is comprised of two elements: stemming and
stopwords removal.

Stemming is the process through which inflection, prefixes and suffixes are remove from each term
in the collection. It is extremely useful especially for languages that are are heavily inflected (like the
verbs in French) and reduces words to their stems. This guarantees that all inflected forms of a term
are treated as one single term, which increases their descriptive power. At the same time, bare stems
may be more difficult for the users to understand, but since the stemmed version of the terms are never
presented to the user, it will not hinder their usage. For English, a free Java version of Porter’s stemmer
was used.

Stopwords (articles, prepositions etc) do not present any descriptive value, so they are of no use for
the clustering process. Even more, they only make the corpus dictionary bigger, so that computation is
slower. Some term weighting schemes (such as Term Frequency) are especially vulnerable to stopwords,
so there elimination is compulsory. It is done using stopword lists for each language (English, French).

As the topic discovery phase requires the texts in their natural form (stemmed words are hard to read
and stopwords improve the overall quality of the cluster names), an untreated version of the documents
is also kept to be used for that phase.

Pretreatment is the only part of our algorithm that is language dependent. The modular design of
the application (subsection 5.6) makes adding languages easy, by adding new stemming algorithms and
stopwords lists.

5.3 Clustering

Clustering the text documents is done using the OKM algorithm (see subsection 4.1.4).

The documents are translated into the Space Vector Model using one the the four measures pre-
sented in subsection 5.1. Following the idea that a compound measure could be created as the product
of other measures [13], the algorithm was created in such a way that any of the term weighting schemes
presented in this paper could be used. In this manner, we could experiment and compare the perfor-
mances obtained by different schemes (see Chapter 6).

Our implementation of the OKM algorithm respects the original indications [4]. The only change
that we made was the stopping condition. In the original form, the iteration come to an end when the
partition composition do not change - which means that a local minimum has been reached. While from
the clustering’s point of view, the final result has been found, it does not necessarily mean that centroids
do not evaluate over the next iterations.

13

In K-Means [12], the centroid is computed depending only on cluster’s composition. Meaning that
if the clusters do not change between 2 iteration, neither do the centroids. In OKM the centroid update
process is a little more complicated, each of the centroid being dependent on both the documents in their
own group, but also on the other centroids resulted from the last iteration. The update formula for the
centroids is:

cj,v =
1∑

xi∈Rj

1
δ2i

x
∑
xi∈Rj

1

δ2i
.x̂jiv (2)

where x̂jiv in formula 2 has the following expression x̂jiv = δixiv − (δi − 1)x̄
A\{cj}
i,v

• A is the set of centroids to which document xi is assigned;

• x̄A\{cj}i,v is vth component of the center of gravity of the centroids to which xi is assigned, except
centroid j

• cj,v is the vth component of the centroid to be updated.

This dependency means that centroids continue to change even if the classes do not. For us, it is very
important to have exact centroids - the process of name assignment is dependent on the centroid quality.
That is why we have chosen not to stop when the clusters stop changing, but rather use a threshold for
the variance of the objective function between iterations (ε < 0, 001).

5.4 Keyphrase Extraction. Name candidates

In [15], there are four conditions specified that must be met by a collocation (or term) in order to be
considered a name candidate:

• appear in the text with a specified frequency. This is based on the assumption that the keyphrases
that occur often in the text have the strongest descriptive power. Also, isolated appearances have
high chances of being incorrect words [18].

• they do not cross sentence boundary. Usually, meaningful keyphrases are contained into a sentence,
because sentences represent markers of topical shift.

• be a complete phrase. Complete phrases make more sense than incomplete ones (“President Nicolas”
vs “President Nicolas Sarkozy”).

• not begin or end with a stopword. Cluster name candidates will be stripped of leading or trailing
stopwords, as that is likely to increase readability. Stopwords in the middle of the keyphrase will
be regarded.

We have chosen to use a Suffix Tree based approach to extract name candidates. It makes use of
the propriety of completeness (see subsection 4.2.2). The heyphrase discovery algorithm works in two
phases: in the first one left and right complete expressions are found and in the second one the two sets
are intersected to obtain the set of complete expressions.

5.4.1 Suffix Tree Construction

The algorithm of discovering right complete expressions relies on the usage of Suffix Tree. A Suffix Tree is
an alphabetically ordered array of all suffixes of a string. We note here that in our case, the fundamental
unit is not the letter (as in the case of classical strings), but the term / word. For example, having the
phrase “we are having a reunion”, the suffix tree for it would be:

14

No Suffix Start Pos

1 a reunion 4

2 are having a reunion 2

3 having a reunion 3

4 reunion 5

5 we are having a reunion 1

One of the most important problems in the construction of the Suffix Tree is the space-time and
time-efficient sorting of the suffixes. In [11], two approaches are presented: “Manber and Myers” and
“Sadakane’s algorithm”. As the paper presents also a comparison of the two, from both the theoretical
and practical performance point of view, we have chosen to use the second approach, which gives better
results (in terms of efficiency).

The only thing required for the algorithm is that the terms have a lexicographic order, so they can
be compared. If in the example above, for the sakes of clarity, we have used the alphabetical order, in
real-case implementation, the criteria used is not important. The order of term arrival into the collection
can also be used.

The “Sadakane’s sorting algorithm” is a modified bucket sorting, which takes into consideration the
unequal dimensions of the suffixes. In [11], it is shown that the sorting complexity is O(n log n), with n
the number of suffixes.

Because a keyphrase can not pass the boundary of a sentence, we have modified the algorithm proposed
in [15] by constructing the Suffix Tree on a sentence based approach, rather than the whole document
approach that was suggested in the paper. Therefore a suffix identification is given not only by the
beginning of the suffix, but also on the index of the sentence.

5.4.2 Complete Phrase Discovery

The general idea behind the right complete keyphrase discovery algorithm is to linearly scan the suffix
array in search of frequent prefixes, counting their occurrences meanwhile. Once such a prefix is identi-
fied, information about its position and frequency (initially the frequency is 2) is stored along with it.

Once the right complete phrases have been discovered, we also need to discover the left complete phrases.
This can be achieved by applying the same algorithm as before to the inverse of the document - meaning
that we create another version of the document, having the words in reverse order. While the algorithm
finds the right complete phrases in lexicographic order, the left complete set still need work. Because
they were extracted from the inverted version of the documents, the phrases are in inverse order, so they
need to be inverted once again and sorted.

With both sets in lexicographic order, we can intersect the two in linear time. Name candidates are
returned along with their frequency. We must note here that the extracted candidates can also be single
terms, as sometimes a single word can be enough for explaining the content of the cluster [15].

The last phase is filtering the candidate set. First, only phrases that have a minimum frequency are
kept, the rest being eliminated. In [15], the value of this threshold is suggested to be between 2 and
5. The relatively low value for it can be explained by the fact that the most frequent expressions are
not necessarily the most expressive, but usually they are meaningless expressions - noise in the output.
We referred to them in subsection 4.2.3. Throughout our experimentations we used a threshold equal to 3.

The last filtering of the candidates that we do is based on one of the conditions that we enumerated
at the beginning of this subsection: not to begin or to end with a stopword. Using the same pretreatment
module as for the clustering, we recursively eliminated leading and trailing stopwords from the phrases.

15

As a result some of the candidates disappeared completely (they were composed only from stopwords),
while others reduced their form to another one (example: “the president” and “president of” become
both “president”). After pruning the empty and identical candidates from the set, our experimentations
show a decrease of the number of phrases by aproximately one third.

5.5 Associating names to clusters

As mentioned at the beginning of this section, we propose to use the results of the clustering process to
select the name of each cluster. Our approach consists in two phases:

• candidates extraction from the documents in the cluster. We feed into the keyphrase
discovery algorithm only the documents that are part of the cluster that want to name. That
way only frequent collocations and terms from those documents will appear as candidates, though
speeding up the calculations.

• phrase scoring based on the similarity with the centroid - cluster center.

As the centroid is the “essence” of the cluster - with the most relevant terms having high weights, we
believe that, by use of the same measure as in the clustering process, we can properly chose a name for
the group. Basically, we take all the name candidates candidates and reintroduce them into the docu-
ment collection as “pseudo-documents”. After applying the same pretreatment as to original documents
(because the keyphrases were extracted from natural language texts, they contain inflected words and
stopwords), we translate them into the Space Vector Model, using the same term weighting scheme as
for the other documents.

The last step is to calculate the similarity between each of these “pseudo-documents” and the cen-
troid of the class. The one that scores highest is considered to be the cluster name.

Our experimentations showed that this approach gives good results, but the fact that only the distance
between the candidate and the cluster’s center is taken into consideration can result in similar names for
different clusters. As a future perspective, we plan to enhance the name selection scoring scheme by also
taking into account the other centroids. This way, we would find not only the keyphrase that is closest
to the center, but also the most distant to the other centers.

5.6 Application Design

Throughout the application design process, we had in mind two things: modularity and interoperability.

As figure 4 presents, our application has 4 major modules. The first three are separated one from
another: Preprocessing (stemming and stopword elimination), Clustering algorithm and Keyphrase Ex-
tractor. Each of them was developed independently and only after separate testing they were merged
into the main application as modules. The forth part - The Cluster Naming Phase - was integrated into
the main program, as it is dependent on all the three previous modules (see Subsection 5.5).

By modular design two objectives were able to be fulfilled:

• reduced dependency on the language. As the pretreatment is the only language dependent
phase of the program, it was given special attention. It was designed so that stemming algorithms
for different languages could be easily added and switched between them. Stopword elimination is
done using stopwords lists (which are external to the program). Adding a new language is as easy
as adding a new file and making the module aware of it.

• possibility of comparing different algorithms. Implementations of other clustering algo-
rithms could replace our OKM module, while keeping the same keyphrase extraction algorithm,
which allows us to compare the performances of different clustering approaches in the field of topic
extraction. Same goes for the keyphrase extraction algorithm.

16

We developed the application in the Java programming language, so that it could be compatible with
other Data Mining platforms (ex. WEKA). As WEKA contains implementations of several clustering
algorithms (Fuzzy KMeans, EM), this could prove to be an advantage.

6 Evaluation

In this section we will present our attempts to evaluate the result of our algorithm. We will briefly
summarize popular evaluation approaches that are used in similar work throughout the literature and
some of the results we obtained.

Our evaluation comports two aspects: the evaluating of the clustering algorithm and that of the
clustering naming process. For each we have chosen different means of scoring the results.

[15] points out three major approaches for evaluating the resulted partition:

• Standard IR metrics: precision and recall. This evaluation method uses an expert evaluated
set of documents, performs the clustering process and then compares the results of the algorithm
with those of the experts. Statistical measure can be computed from these data and, thus, allowing
us to compare algorithms between them.

• Merge-then-cluster approach. This is an usual evaluation method which relies on running the
clustering algorithm on the specially manufactured data set. This data set is the result of the
merging of several smaller data sets, in which all the documents share the same topic. The quality
of the clustering algorithm is then judged by the percentage with which the original data sets are
reconstructed into topics. We consider this method inappropriate because our clustering algorithm
perform an overlapping clustering, even if the original sets were disjointed. That means that this
evaluation means seriously penalizes our algorithm compared to crisp algorithms. Also, we consider
that running our algorithm on crisp data sets would also be unrealistic: real life textual data rarely
has only one topic.

• User evaluation. In this approach, a considerable(so that subjectivity could be eliminated through
the means of average responses) number of subjects are asked to manually rate the results of the
algorithm. While this method has the disadvantage of being subjective and also slow and not
automatized, it is also the closest to the human user. The real human feeling towards the results
can be measured. We stress out that this method is also very general and could be used for any
kind of Information Retrieval results.

We have chosen to use the “standard IR metric” approach for evaluation the clustering phase and the
user evaluation for the name extraction phase.

6.1 Clustering evaluation

For evaluation the clustering process, we have used a standard IR approach, using the precision and
recall. Following the experimentation in [4], we have used a data set of 262 documents, a sub-partition
of the Reuters corpus. Reuters is a collection of articles in the English language, some of them have one
or more topics associated. The documents we selected had at least one topic.

Also, [4] proposes the following evaluation: starting from this data set we execute our algorithm. We call
two documents as being “associated” if they both belong to one of the classes found in the clustering
process. Further more, we say that this association is correct only if the two documents share an common
Reuters label/topic. The partition is then evaluated based on the total number of associations (noted
na), the number of correct ones (noted nb) and the total number of expected associations (noted nc).
With this indicators, the precision, recall and Fscore can be calculated:

precision =
nb
na

; recall =
nb
nc

; Fscore =
(β2 + 1) ∗ precision ∗ recall
β2 ∗ precision+ recall

17

Using the value β = 1, we conducted our experiments on the specially prepared data set, varying
the number of classes from 5 to 30, for each value 10 times and taking the highest score. We did this
experimentation also for the classical K-Means algorithm, so that the Fscore could be compared.

Figure 5: Fscore obtained for OKM, for differ-
ent term weighting schemes.

Figure 6: Fscore obtained for KMeans, for dif-
ferent term weighting schemes.

What we bring new to this experimentations is also the variation of the term weighting scheme. In
this way we could experimentally evaluate the performances of each term weighting scheme. The results
for the comparison over the different schemes with the OKM algorithm can be found in figure 5 and the
ones with KMeans in figure 6. The side by side comparison of the precision and recall over the different
term weighting schemes for the two algorithms can be found in appendix A. It is very interesting to
observe that in both cases the measure that performed best was the “Term Frequency” measure. That
is why we chose this measure to create the graphic that compares the performances of OKM and KMeans.

We observe that all three figures 5, 6 and 7 show a for almost all graphs a local maximum for the
number of clusters k = 15. This suggest, in fact, that 15 is the optimum number of clusters for that
specific data set.

Figure 7: Fscore comparison between OKM and KMeans.

Figure 7 confirms the initial hypothesis that an overlapping approach is more suitable to Natural

18

Language Textual Data. While the quality of the crisp clustering decreases as the number of groups
increases, the overlapping approach maintains a steady score. The decrease of the Fscore observed in
the KMeans’ case is because of the reduction of the number of associations (and the recall) with the
augmentation of the number of classes. If in the case of KMeans this decrease cannot be compensated by
the increase in precision, in the case of OKM intersection of the classes attenuates the decrese of recall.
[4] [5]

6.2 Name Extraction evaluation

To evaluate the Name Extraction phase results, we chose an expert based approach. Basically, this means
users will evaluate manually each result and score it. Using the scores from them, statistical calculations
can be done in order to extract interesting data.

The reason why we chose this approach is that we are trying to evaluate “human tastes”. Because
each human is different from the other, a name that one could find meaningful for a certain group of
text, another could find that it does not synthesize well the content. And while the Information Retrieval
literature does not provide with a widely accepted mean of automatically evaluate the results, we came
to the conclusion that this is the best approach for the moment.

We conducted our evaluation on two different data sets: one in English (the same corpus used in the
cluster evaluation) and one in French - the content of a forum: “Commémoration”. Due to the limited
time that we had at our disposal for doing the testing, only three test subjects were involved in the pro-
cess. For this reason we cannot make any judgment over the overall quality of the naming process, but
still some interesting conclusion can be drawn from the comparison of different term weighting schemes
over the corpus.

For each data set, we executed the algorithm varying the number of clusters from 5 to 25 (in two of
the experimentations, and 8 to 12 in the third one), using each measure and, for each combination of
parameters, 5 times. The results were saved into a file and distributed to our participants. They rated
each cluster name on the following scale:

• 0 (zero) - the cluster name is totally meaningless, it brings no information on the content of the
documents in it;

• 1 (one) - the name is somewhat interesting;

• 2 (two) - the name synthesizes well the content of the cluster and brings useful information.

Once the names were graded, the data was statistically processed - the named partition was assigned
a grade between 0 (worst possible) and 1(perfect naming) and an average was calculated for all executions
with identical parameters - in order to obtain the percentage of good quality, medium quality and bad
quality names for each combination of parameters, for each measure and globally.

In Figures 8 and 9 are shown the results obtained on the Reuters data set. While Figure 8 presents
the quality of the naming process for different measures used, in figure 9, the score (calculated as in the
previous paragraph) is shown over different cluster numbers.

There are 2 observations that can be made from this experimentation:

• in all experimentations (the graphics of the other 2 are presented in Appendix B), highest percentage
of good quality names were obtained by the schemes “Presence/Absence” and “Term Frequency”.
This is an experimental confirmation of a theoretical fact: the IDF measure (also present in TFx-
IDF), tents to penalize the words that appear in many documents. While this might be useful in
the case of clustering, it is rather bothering in the case of cluster naming, as the chosen keyphrase
is supposed to be representative for all the documents in the cluster, though the terms composing
it tend to appear often in the text.

19

Figure 8: Name Quality: Different Term
Weighting Schemes used (Reuters)

Figure 9: Name Quality: Different Term
Weighting Schemes and Cluster Number Vari-
ation (Reuters)

• the quality of the names decreases with the increase of the number of clusters. This comes from
the fact that name candidates are phrases that appear in the text of the documents in the cluster
with a minimum frequency. As cluster number increases, cluster size decreases, and so does the
candidate list size. Basically, there are fewer candidates to chose from.

6.3 Sample results

We present here an example of the results that algorithm outputs. The execution was performed over
the data set ”Commémoration”, in the French language. The parameters used:

• number of clusters k = 5;

• measure used - “Term Frequency”;

• minimum frequency for phrases to become candidates - 3;

• threshold for stopping the clustering algorithm - minimum variation between iterations - ε < 0.001;

Centroid No Highest Rated Words Cluster Name

1
”francai” ”question” ”franc” ”guer” ”histoi”

français
”oubli” ”memoi” ”sujet” ”faut” ”fair”

2
”comemo” ”jour” ”fer” ”suprim” ”histoi”

jours de commémoration
”journ” ”acord” ”novemb” ”bon” ”juilet”

3
”ariv” ”hi” ”gose” ”aniversai” ”comemoron”

anniversaire
”divorc” ”ajouton” ”afirmatif” ”souvient” ”rous”

4
”travail” ”gagn” ”suprim” ”polit” ”dimanch”

travailler plus pour gagner
”francais” ”just” ”question” ”grand” ”pinard”

5
”jour” ”fete” ”americain” ”franc” ”fer”

jours fériés
”day” ”jambon” ”recomencait” ”emul” ”moutonism”

20

7 Conclusions and Perspectives

Being faced with increasing quantities of information, must of which has no predetermined structure, we
consider that devising means of effective textual clustering and topic extraction is of great interest. Faced
with a huge number of documents, the user needs to have a way of dividing them by their thematic. And
to quickly judge if a group presents interest do him, he need to be presented with a label of that group,
a name, an expression that he can be easily read.

While the last two decades has seen considerable work in this field, most proposed approaches leave
out an essential characteristic of the Natural Language Texts: the fact that they can approach multiple
subjects. Therefore, dividing documents into crisp partitions, reduces the overall quality of the clustering
process.

Starting with this observation, we directed our research to find overlapping solutions. We decided to
use the OKM (Overlapping K-Means) [4], a recently developed algorithm, that is inspired from K-Means.
In the evaluation phase, we tried to improve and complete the authors experiments, by studying the
behavior of the algorithm when using different term weighting schemes.

In our search to make our algorithm as noise resistant and language independent as possible, we chose a
statistical approach for extracting the keyphrases from the text. We have tested our approach with two
languages and data sets of different types: newspaper articles and informal forum discussions.

Another goal of our work was to be able to compare the performances of the chosen algorithms with
other proposed in the literature. That resulted in a modular application design, that allow replacing of
any module with a similar one. This way a non-overlapping approach was studied along with the OKM
algorithm. With a design compatible to other Data Mining platforms (ex. WEKA) , we believe that we
will be able to test even more clustering algorithms and compare their performances.

In our work, we gave special attention to the study of the influence of different term weighting schemes
on the general performances of both the clustering phase and the name association phase. In our exper-
iments, we tried to determine which one behaves better when faced with real-world data sets.

We strongly believe that our work in not complete. For the future, there are some enhancements that we
would like to bring forward:

• a better cluster - name association. In the present state, our algorithm associates names to
clusters based only on the similarity between the center of each cluster and the name candidate.
This can sometimes result in similar names for different clusters. We believe that, by modifying
the name association scheme, so that it will take into consideration also the similarity with the
other centers, we can manage to find names that are representative for the cluster in question, but
dissimilar to the others;

• adding a wOKM implementation. wOKM [5] a weighted version of OKM, that uses weights
internally and achieves even better performances in terms of precision, recall and FScore. We
believe that switching from OKM to wOKM would improve the overall quality of the clustering
process.

• extraction of name candidates from the entire corpus. Experiments have shown that with
the increase of number of clusters, the size of the text from which the name candidates are extracted
diminishes. That leads to a decrease of name quality. We believe that we could avoid this problem
by extracting the name candidates from the entire corpus of documents. Still this will mean that a
better name association scheme must be devised.

• a new semi-automated manner of cluster names evaluation. Though we performed an
expert-based evaluation, we believe that we could automatize the process. In order to test the

21

performances of topic extraction with different clustering approaches, we can not rely only on user
evaluation. Our future solution would be the extraction of all cluster name candidates from the
text of the documents in the corpus and the scoring of each one. Once the list of scored phrases is
complete, using the partition scoring that we proposed for our evaluation, we could automatically
evaluate the performances of different clustering techniques.

• experiments on a larger scale. Due to the limited time allocated to this project, we were unable
to perform detailed experiments on the design. We would like to have the chance of experimenting
on more data sets, possibly in other languages than English and French.

22

References

[1] Henry Anaya-Sánchez, Aurora Pons-Porrata, and Rafael Berlanga-Llavori. A new document cluster-
ing algorithm for topic discovering and labeling. In CIARP ’08: Proceedings of the 13th Iberoamerican
congress on Pattern Recognition, pages 161–168, Berlin, Heidelberg, 2008. Springer-Verlag.

[2] I Biskri, J G Meunier, and S Joyal. L’extraction des termes complexes : une approche modulaire
semiautomatique. In Données Textuelles, Louvain-La-Neuve, Belgique), Gérard Purnelle, Cédrick
Fairon & Anne Dister (eds). Presses Universitaires de Louvain, Volume 1, pp 192201, ISBN, pages
2–930344, 2004.

[3] David M. Blei, Andrew Y. Ng, Michael I. Jordan, and John Lafferty. Latent dirichlet allocation.
Journal of Machine Learning Research, 3:2003, 2003.

[4] Guillaume Cleuziou. Okm : une extension des k-moyennes pour la recherche de classes recouvrantes.
In Monique Noirhomme-Fraiture and Gilles Venturini, editors, EGC, volume RNTI-E-9 of Revue des
Nouvelles Technologies de l’Information, pages 691–702. Cépaduès-Éditions, 2007.

[5] Guillaume Cleuziou. Okmed et wokm : deux variantes de okm pour la classification recouvrante.
In Jean-Gabriel Ganascia and Pierre Gancarski, editors, EGC, volume RNTI-E-15 of Revue des
Nouvelles Technologies de l’Information, pages 31–42. Cépaduès-Éditions, 2009.

[6] Guillaume Cleuziou and Jacques-Henri Sublemontier. Étude comparative de deux approches de
classification recouvrante : Moc vs. okm. In Fabrice Guillet and Brigitte Trousse, editors, EGC,
volume RNTI-E-11 of Revue des Nouvelles Technologies de l’Information, pages 667–678. Cépaduès-
Éditions, 2008.

[7] Joaquim da Silva, Gaël Dias, Sylvie Guilloré, and Pereira. Using localmaxs algorithm for the extrac-
tion of contiguous and non-contiguous multiword lexical units. Progress in Artificial Intelligence,
page 849, 1999.

[8] G. Dias, S. Guilloré, and J. Gabriel Pereira Lopes. Extraction automatique d’associations textuelles
à partir de corpora non traités. In M. Rajman and J.-C. Chapelier, editors, JADT 2000 - 5èmes
Journées Internationales d’Analyse Statistique de Données Textuelles, volume 2, pages 213–220,
Lausanne, 22-24 March 2000. Ecole Polytechnique Fédérale de Lausanne.

[9] Filippo Geraci, Marco Pellegrini, Marco Maggini, and Fabrizio Sebastiani. Cluster generation and
cluster labelling for web snippets: A fast and accurate hierarchical solution. pages 25–36. 2006.

[10] Khaled M. Hammouda, Diego N. Matute, and Mohamed S. Kamel. Corephrase: Keyphrase extrac-
tion for document clustering. MLDM, 2005:265–274, 2005.

[11] N. Jesper Larsson. Notes on suffix sorting. (LU-CS-TR:98-199, LUNDFD6/(NFCS-3130)/1–
43/(1998)), jun 1998.

[12] J. B. Macqueen. Some methods of classification and analysis of multivariate observations. In Pro-
ceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pages 281–297,
1967.

[13] Jaeseok Myung, Jung-Yeon Yang, and Sang-goo Lee. Picachoo: a tool for customizable feature
extraction utilizing characteristics of textual data. In ICUIMC ’09: Proceedings of the 3rd Inter-
national Conference on Ubiquitous Information Management and Communication, pages 650–655,
New York, NY, USA, 2009. ACM.

[14] Aristomenis Thanopoulos Nikos, Nikos Fakotakis, and George Kokkinakis. Comparative evalua-
tion of collocation extraction metrics. In In Proceedings of the 3rd Language Resources Evaluation
Conference, pages 620–625, 2002.

23

[15] Stanislaw Osinski. An algorithm for clustering of web search results. Master’s thesis, Poznań
University of Technology, Poland, 2003.

[16] Stanislaw Osinski and Dawid Weiss. Conceptual clustering using lingo algorithm: Evaluation on
open directory project data. pages 369–377, 2004.

[17] Aurora Pons-Porrata, Rafael Berlanga-Llavori, and José Ruiz-Shulcloper. Topic discovery based on
text mining techniques. Inf. Process. Manage., 43(3):752–768, 2007.

[18] M. Roche. Intégration de la construction de la terminologie de domaines spécialisés dans un processus
global de fouille de textes. PhD thesis, Université de Paris 11, Décembre 2004.

[19] Frank A. Smadja. From n-grams to collocations: an evaluation of xtract. In Proceedings of the 29th
annual meeting on Association for Computational Linguistics, pages 279–284, Morristown, NJ, USA,
1991. Association for Computational Linguistics.

24

APPENDICES

I

A Side-by-side Precision and Recall, OKM vs. KMeans.

Figure 10: Precision obtained for OKM, for
different term weighting schemes.

Figure 11: Precision obtained for KMeans, for
different term weighting schemes.

Figure 12: Recall obtained for OKM, for dif-
ferent term weighting schemes.

Figure 13: Recall obtained for KMeans, for
different term weighting schemes.

II

B Cluster Name Quality. Forum Commémoration

Figure 14: Name Quality: Different Term
Weighting Schemes used (Commémoration 5-
25).

Figure 15: Name Quality: Different Term
Weighting Schemes and Cluster Number Vari-
ation (Commémoration 5-25)

Figure 16: Name Quality: Different Term
Weighting Schemes used (Commémoration 8-
12)..

Figure 17: Name Quality: Different Term
Weighting Schemes and Cluster Number Vari-
ation (Commémoration 8-12)

III

	Hosting Institution
	Acknowledgments
	Introduction
	State of the Art
	Clustering of the documents
	Singular Value Decomposition
	Latent Dirichlet allocation
	OKM (Overlapping K-Means)

	Extracting the keyphrases
	Linguistic approaches
	Numerical approaches
	Hybrid approaches

	Approaches that deal both with clustering and topic extraction

	Our approach
	Vector Space Model
	Pretreatement
	Clustering
	Keyphrase Extraction. Name candidates
	Suffix Tree Construction
	Complete Phrase Discovery

	Associating names to clusters
	Application Design

	Evaluation
	Clustering evaluation
	Name Extraction evaluation
	Sample results

	Conclusions and Perspectives
	Side-by-side Precision and Recall, OKM vs. KMeans.
	Cluster Name Quality. Forum Commémoration

