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Semi-Supervised Structuring of Complex Data

Abstract :

The objective of this thesis is to explore how complex data can be treated using unsu-
pervised machine learning techniques, in which additional information is injected to guide
the exploratory process. The two main research challenges addressed in this work are (a)
leveraging semantic information into data numerical representation and into the learning
algorithms and (b) making use of the temporal dimension when analyzing complex data.
The main research challenges are derived, through a dialectical relation between theory and
practice, into more specific learning tasks, which vary from (i) detecting typical evolution
patterns to (ii) improving data representation by using semantics to (iii) embedding expert
information into image numerical description or to (iv) using semantic resources (e.g., Word-
Net) when evaluation topics extracted from text. The methods we privilege when tackling
with our learning tasks are unsupervised and, mainly, semi-supervised clustering. Therefore,
the general context of this thesis lies at the intersection of the two large domains of complex
data analysis and semi-supervised clustering.

We divide our work into four parts. The first is dedicated to the temporal component of
data, in which we propose a temporal clustering algorithms, with contiguity constraints, and
use it to detect typical evolutions. The second part is dedicated to semantic reconstruction
of the description space of the data, and we propose an unsupervised feature construction
algorithm, which replaces highly correlated pairs of features with conjunctions of literals.
In the third part, we tackle the problem of constructing a semantically-enriched image
representation starting from a baseline representation, and we propose two approaches
toward leveraging external expert knowledge, under the form of non-positional labels.
We dedicate the fourth part of our work to textual data, and more precisely towards the
task of topic extraction, using an overlapping text clustering algorithm, topic labeling,
using frequent complete phrases, and semantic topic evaluation, by using an external
concept hierarchy. We add a fifth part, which describes the applied part of our work,
CommentWatcher, an open-source platform for analyzing online discussion forums.

Keywords : complex data analysis, semi-supervised clustering, semantic data repre-
sentation, temporal clustering, topic extraction, semantic-enriched image representation,
feature construction







Structuration semi-supervisée des données complexes

Résumé :

L’objectif du travail présenté dans cette thése est d’explorer comment les données com-
plexes peuvent étre analysées en utilisant des techniques d’apprentissage automatique non-
supervisé, dans lequel des connaissances supplémentaires sont introduits pour guider le pro-
cessus exploratoire. Ce travail de recherche traite deux grandes problématiques : d’une part,
I'utilisation d’informations sémantiques dans la construction de la représentation numérique
ainsi que dans les algorithmes d’apprentissage automatique, et d’autre part, I'utilisation de
la dimension temporelle dans ’analyse de données complexes. De ces problématiques de
recherche ont émergé, au travers d’une relation dialectique entre la théorie et la pratique,
des taches plus précises, a savoir : (i) la détection d’évolutions typiques, (ii) 'amélioration
de la représentation des données en utilisant leur sémantique, (iii) I'introduction d’informa-
tions expertes dans la représentation numeérique des images et (iv) l'utilisation de ressources
sémantiques additionnelles (comme WordNet) pour I’évaluation des thématiques extraites
a partir du texte. Les méthodes qu’on privilégie dans notre travail sont des méthodes non-
supervisées et, notamment, des méthodes semi-supervisées. Par conséquent, le contexte
générale de cette thése cette thése se situe & au croisement des domaines de ’analyse de
données complexes et du clustering semi-supervisé.

Nous divisons notre travail en quatre parties. La premiére partie est dédiée a la
dimension temporelle des données, et dans cette optique nous proposons un algorithme de
clustering temporel avec des contraintes de contiguité, que nous appliquons a la détection
d’évolutions typiques. La deuxiéme partie quant a elle s’intéresse a la reconstruction
sémantique de ’espace de représentation, tache pour laquelle nous proposons un algorithme
non-supervisé de construction d’attributs, dont le principe de base est de remplacer les
paires d’attributs hautement corrélés par des conjonctions de ceux-ci. Dans la troisiéme
partie, nous traitons le probléme de la construction de représentations numériques séman-
tiquement enrichies des images et pour cela nous proposons deux approches qui utilisent des
connaissances expertes sous la forme d’annotations. Enfin, la derniére partie de nos travaux
théoriques est dédiée aux données textuelles, plus précisément aux taches d’extraction
de thématiques & l’'aide d’un algorithme de clustering avec recouvrement, de nommage
de thématiques par des expressions intelligibles, ainsi qu’a 1’évaluation sémantique des
thématiques, en utilisant une hiérarchie de concepts. A ce travail vient s’ajouter une
cinquiéme partie pratique, dont ’aboutissement est la plateforme CommentWatcher qui
permet d’analyser les forums de discussion en ligne.

Mots clés : analyse de données complexes, clustering semi-supervisé, représentation
sémantique de données, clustering temporel, extraction de thématiques, représentation des
images enrichi avec de la sémantique, construction non-supervisée des attributs
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Introduction

Contents
1.1 Thebigpicture. . . . . . . . . o i i e e
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1.3 The constituent parts of the thesis . . . . . ... ... ... .....
1.4 Content of the different chapters . . . ... ... ... ........

S Ut W

1.1 The big picture

The early stages of the Web (i.e., the Web 1.0) was made out of static pages, user
could consult their content, but not contribute to it. The Web 2.0 allowed users to interact
and collaborate with each, while dynamically generating the content of web pages. The new
paradigm contributed to the change of the way in which information is produced, shared and
consumed. Users read, watch, listen existing material, then they react, post, describe and
tag, therefore enriching the available information. All this freely accessible information is a
non-exhaustible source of data. Internet-originating data is just one example of a broader
class of data, called complex data. Complex data are heterogeneous data (e.g., text,
images, video, audio etc.), which are further interlinked through the structure of the complex
document (i.e., the webpage, in the case of Internet) in which they reside. These data have a
big dimensionality and very often they have a temporal dimension attached. The temporal
aspect is particularly important for news articles or online social network postings.

The difficulties of dealing with the complex data originating from the Web 2.0 (i.e.,
the immense quantities of unstructured and semi-structured heterogeneous data) are the
central points of the main applications related to the Internet, such as Information Search
and Retrieval (finding useful information in the enormous amounts of available data is still
the most prevalent user task on the internet), Categorization (a collective effort to organize
the available information, e.g., folksonomies such as Delicious!), or Recommender Systems
(recommending new content based on the habits of the user inferred from the currently
viewed content).

The difficulties introduced by the Web 2.0 led to the emergence of the Semantic Web?,
which is linked to converting the current unstructured and semi-structured documents into a
“Web of data”, by including machine-readable semantic content into web pages. The purpose
of the Semantic Web is to provide a common framework that allows information to be shared

1. https://delicious.com/
2. Semantic Web and Web 3.0 are often used as synonyms, their definition is not yet standardized.
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and reused across application, enterprise and community boundaries. It involves publishing
in languages specifically designed for data (such RDF 3, OWL* and XML %). The machine-
readable descriptions enable content managers to add meaning to the content. In this way,
the machine can process information at a semantic level, instead of text, thereby obtaining
more meaningful results. This semantic information is gathered in knowledge repositories,
such as freely accessible ontologies (e.g., DBpedia® [Bizer et al. 2009], Freebase”). One of
the main challenges of the Semantic Web is obtaining a semantic representation of data. The
main problem of representing data of different natures (e.g., image, text) is that low-level
features used to digitally represent data are far removed from the semantics of the content.

Our work: research challenges and privileged methods. The main research chal-
lenge of the work presented in this thesis is leveraging semantics when dealing with
complex data. Chapters 4, 5 and 6 approach the problems of introducing human knowledge
(e.g., labels, knowledge repositories) into the learning process and semantically reconstruct-
ing the description space of data. We distinguish between two sub-challenges: (i) translating
data into a semantic-aware representation space, which deals with constructing a represen-
tation space that better embeds the semantics and which can be used directly with classical
machine learning algorithm, and (ii) injecting knowledge into machine learning algorithms,
which deals with modifying the machine learning algorithms so that they take into account
semantics while inferring knowledge.

The second research challenge of this thesis is leveraging the temporal dimension
of complex data. The temporal dimension is more than just another descriptive dimension
of data, since it profoundly changes the learning problem. The description of data becomes
contextualized (i.e., a certain description is true during a given time frame) and new learn-
ing problems arise: following the temporal evolution of individuals, detecting trends, topic
burstiness, popular events tracking, etc. The temporal dimension is intimately related to
the interactive aspect of the Web 2.0. We approach the temporal dimension in Chapter 3,
where we develop a clustering algorithm in which we take time into account to construct
temporally coherent clusters. In the work presented in this thesis, we deal with each of these
research challenges individually. We currently have undergoing work (detailed in Chapter 8),
which will allow to integrate together our two research challenges.

The methods we privilege when tackling with our two major research problems are unsu-
pervised and, mainly, semi-supervised clustering. Semi-supervised clustering [Davidson
& Basu 2007] is essentially an unsupervised learning technique, in which partial knowledge is
leveraged in order to guide the clustering process. Unlike semi-supervised learning [Chapelle
et al. 2006], where the accent is on dealing with missing data in supervised algorithms,
semi-supervised clustering is used when the expert knowledge is incomplete or in such low
quantity that it would be impossible to apply supervised techniques. We use semi-supervised
partial knowledge to model the semantic information and the temporal dimension when an-
alyzing complex data. Therefore, the general context of this thesis lies at the intersection

. http://www.w3.org/RDF/
http://www.w3.org/0WL/
http://wuw.w3.org/XML/
. http://www.dbpedia.org
. http://www.freebase.com/
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Figure 1.1 — The schema structuring the work in this thesis: starting with the input complex
data and ending with examples of applications.

of the two large domains of complex data analysis and semi-supervised clustering.

The remainder of this chapter presents an overview of the research project and the de-
tailed motivations of our work (in Section 1.2), we describe the organization of the different
parts of our work (in Section 1.3), followed by a detailed plan of the manuscript (in Sec-
tion 1.4). The research work presented in this thesis was performed at the ERIC Laboratory
in Lyon, France, in the Data Mining and Decision team.

1.2 Research project

Complex Data Mining is a very vast domain, touching Computer Vision, Natural Lan-
guage Processing, Artificial Intelligence and even Sociology (e.g., constructing and analyzing
online social networks). I have, therefore, derived the two central research challenges and
focused on more specific learning tasks, which vary from (i) detecting typical evolution pat-
terns to (ii) improving data representation by using semantics or to (iii) embedding expert
information into image numerical description. My research project was built incrementally,
through a dialectical relation between theory and practice. The two advanced together, in-
fluencing each other along the process. The before mentioned learning tasks I interested in,
are partially motivated by the specific problems and applications needed by the different
research projects in which I was involved (see in Appendix A).

Figure 1.1 presents the schema of the work presented in this manuscript. We start from
a subset of types of complex data (i.e., we interest in text, image, numeric data and data
with a temporal dimension) (on the left of the schema). In the work we performed, we
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analyze each type of data independently. A perspective of our work is a broader integration
of all the information provided by complex data, in order to take profit from every available
piece of information. At the right side of the schema in Figure 1.1 are the final abstract
applications of our work, such as Information Access, Knowledge Discovery from Data, So-
cial Network Analysis or CommentWatcher, an online media analysis tool, the result of our
applied work. In between we present, from right to left (from the purpose of our work, i.e.,
the output, to the input), (a) the more specific learning tasks we approach in our work,
(b) the research challenges that derive in the learning tasks and (c) methods and tools we
privilege in order to attain our research challenges. The arrows indicate how the different
parts were used in our research. For example, we interest in leveraging semantics into the
construction of the representation for images, text or numeric data. Similarly, the research
challenge of leveraging the temporal dimension is derived into the two specific tasks of tem-
poral data clustering and social role identification. These can be, in turn, used in application
as Knowledge Discovery from Data, Social Network Analysis or into CommentWatcher, the
developed software.

The motivations of our work The motivations behind our work can be resumed at
different abstraction levels.

On an applied level, our work is related to the various research needs of the projects I
was involved (more details in Annex A). The task of detecting typical evolution patterns is
in relation with the interest of researched in Political Sciences, involved in the IMAGIWEB
project . Another example is the multi-sided link between the research collaboration with
the Technicolor laboratories”, the CRTT-ERIC project, our work concerning the textual
dimension, the task of Social Role Identification and CommentWatcher (which presented in
detail in Chapter 7).

On the problems and solutions level, our work was motivated by the need to pro-
pose solutions for a series of specific learning tasks. We proposed new algorithms (e.g., the
temporal clustering algorithms TDCK-Means, the feature construction algorithm uFC),
new measures (e.g., the temporal-aware dissimilarity measure), parameter choice heuristics
(e.g., the x? hypothesis testing-based heuristic), etc.

On the research challenges level, at the core of our research work are the two research
challenges detailed earlier: (a) embedding semantics into data representation and machine
learning algorithms and (b) leveraging the temporal dimension.

The abstract applications level. At a meta level, our work is motivated and can
be used in application as Information Access, Knowledge Discovery from Data or Social
Network Analysis.

The three most important original ideas in our work Throughout this manuscript,
the reader will find a number of original proposals. In the following, we single out three of
the most important ideas of our research.

Taking into account both the temporal dimension and the descriptive dimension into a
clustering framework. The resulted clusters are coherent from both the temporal and the

8. http://eric.univ-1lyon2.fr/~jvelcin/imagiweb/
9. https://research.technicolor.com/rennes/
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descriptive point of view. Constraints are added to ensure the entity segmentation contiguity.

Unsupervised construction of a feature set based on the co-occurrences issued from the
dataset. This allows adapting a feature set to the dataset’s semantics. The new features are
constructed as conjunctions of the initial features and their negations, which renders the
result comprehensible for the human reader.

Using non-positional user labels (denoting objects) to filter irrelevant visual features and
to construct a semantically aware visual vocabulary for a “bag-of-feature” image represen-
tation. We use the information about the presence of objects in images to detect and re-
move features unlikely to belong to the given object. Dedicated visual vocabularies are
constructed, resulting in a numerical description which yields higher object categorization
accuracy.

1.3 The constituent parts of the thesis

Given the great diversity of the approached subjects, I divide my work into four distinct,
yet complementary parts. The four parts deal, respectively, with (a) the temporal dimension,
(b) semantic data representation, and the different natures of complex data, i.e., (c) image
and (d) text. Each part is dealt with in an individual chapter, which contains an overview of
the state of the art of the domain, the proposals, conclusions about the work and some plans
for future work. A fifth chapter is dedicated to the practical aspects of my work, most notably
CommentWatcher, an open-source platform for online discussion analysis. Therefore, each of
the five chapters can be seen as autonomous, while remaining connected the directive
guidelines, the transverse links between them and the conceptual articulation. Each
of these is further detailed in the following paragraphs.

Directive guidelines The core research challenges are translated into directive guide-
lines, that run throughout my research: (i) human comprehension, (ii) translating data of
different natures into a semantic-aware description space and (iii) devising algorithms and
methods that embed semantics and the temporal component.

In each of our proposals, we consider crucial to generate human comprehensible out-
puts. Black-box approaches exist for many problems (e.g., Principal Component Analysis
is a solution for re-organizing the description space), but the semantic meaning of their
output is not always clear and, therefore, the latter are difficult to interpret. Our proposals
are developed with human comprehensibility in mind.

Another directive guideline of our work is translating data of different natures
into a semantic-aware description space, which we call throughout this manuscript
the Numeric Vectorial Space. Constructing such a description space usually consists in (a)
rendering the data into a common usable numeric format, which succeeds in capturing the
information present in the native format, and in (b) efficiently using external information
for improving the numeric representation.

Finally, a central axis of our research is devising algorithms and methods that
embed semantics and the temporal component, based on unsupervised and semi-
supervised techniques. Often additional information and knowledge is attached to the data,
under the form of (a) user labels, (b) structure of interconnected documents or (c) external
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knowledge bases. We use this additional knowledge at multiple instances, usually using
semi-supervised clustering techniques. We also use semi-supervised constraints to model
the temporal dependencies in the data.

Transverse links There are multiple transverse links between the individual parts
of our research. Our work with textual data is intimately linked with the software
CommentWatcher. The text from online discussion forums is retrieved, we extract topics
from it and infer a social network using the forum’s reply-to relation. The social network is
modeled and visualized as a multidigraph, in which links between nodes are associated to
topics. Furthermore, the temporal-driven clustering we propose is applied to detect social
roles in the social network. Another transverse link concerns our feature construction algo-
rithms, which was initially motivated by the need to re-organize the user label set we use to
create the semantic-enabled image representation. We also have ongoing work which deals
with embedding the temporal dimension into this feature construction algorithm. The idea
is to detect if features are correlated with a certain time lag.

Conceptual articulation of the different parts It is noteworthy that the work pre-
sented in this thesis is not a blueprint of an integrated complex data analysis system.
Realizing such a system would have been possible in the context of a very specific (applied)
problem, which is not the case of the different collaborations and projects in which I was
involved. Whatsoever, a conceptual articulation exists between all the parts of our work:
data of different natures is translated into a common semantic-aware numeric format, which
is afterwards used together with the temporal dimension or with external knowledge bases.
During the next chapters, we evolve the schematic representation of our work in Figure 1.1
to a complete conceptual integration of our proposals. At the end of each chapter, the reader
is shown how the work presented in the given chapter can be conceptually integrated with
the work in previous chapters. We incrementally evolve the schema in Figure 1.1 in Fig-
ures 3.1 (p. 30), 4.17 (p. 93), 5.13 (p. 122) and 6.13 (p. 165) into the complete schema in
Figure 8.1 (p. 182).

1.4 Content of the different chapters

Excepting the current chapter, this manuscript is structured over six chapters, as follows.

In Chapter 2, we present a general overview of complex data mining. Starting from
the specificities of complex data, we identify some of the difficulties of analyzing them and
we present some of the solutions existing in the literature. We present the field of semi-
supervised clustering in a similar fashion: we start from the necessities of semi-supervised
clustering, the advantages and difficulties. We present the taxonomy and briefly present
some of the most relevant existing approaches. All along this chapter, we position our work
in the broader context of these two domains.

In Chapter 3, we leverage the temporal dimension of the complex data and we ap-
ply our proposals to the learning task of detecting typical evolution patterns. We propose
a new temporal-aware dissimilarity measure and a segmentation contiguity penalty func-
tion. We combine the temporal dimension of complex data with a semi-supervised clus-
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tering technique. We propose a novel time-driven constrained clustering algorithm, called
TDCK-Means, which creates a partition of coherent clusters, both in the multidimensional
space and in the temporal space. We also show how this temporal clustering algorithm can
be applied to a different task: finding behavioral roles in an online community.

In Chapter 4, we regroup our research concerning the task of semantic description
space reconstruction. We seek to construct, in an unsupervised way, a new description space
which embeds some of the semantics present in a given dataset. The constructed features
(i.e., the dimensions of the new description space) are, at the same time, comprehensible for
a human user. We propose two algorithms that construct the new features as conjunctions
of the initial primitive features or their negations. The generated feature sets have reduced
correlations between features and succeed in catching some of the hidden relations between
individuals in a dataset. We also propose a method based on statistical testing for setting
the values of parameters.

Chapter 5 presents our research concerning image data. We are particularly inter-
ested in the task of improving image representation using semi-supervised visual vocabulary
construction. We present the “bag-of-features” representation, one of the most widely used
methods for translating images from their native format to a numeric Vectorial Space. We
are interested in using expert knowledge, under the form of non-positional labels attached
to the images, in the process of creating the numerical representation. We propose two ap-
proaches: the first one is a label-based visual vocabulary construction algorithm, while the
second deals with filtering the irrelevant features for a given object, in order to improve
object categorization accuracy.

Chapter 6 presents in detail our research concerning textual data, and more precisely,
we are interested in the task of topic extraction and evaluation. After a presentation of the
“bag-of-words” representation, we make an in-depth review of topic extraction and evalu-
ation literature, while referencing methods related to our general domain of interest (e.g.,
incorporating the temporal dimension or external semantic knowledge). We complete this
bibliographic research with the presentation of a textual clustering-based topic extraction
system and a topic evaluation systems based on an external semantic knowledge base. At
the end of the chapter, we present some applications of this system to the Ontology Learning
process, and to topic improvement by removing spurious words.

Chapter 7 presents the practical prototype production. The most prominent produced
software is CommentWatcher, an open source tool for analyzing discussions on web forums.
Constructed as a web platform, CommentWatcher features (i) automatic fetching of forums,
using a versatile parser architecture, (ii) topic extraction from a selection of texts and (iii)
a temporal visualization of extracted topics and the underlying social network of users. It
aims both the media watchers (it allows quick identification of important subjects in the
forums and user interest) and the researchers in social media (who can use it to constitute
temporal textual datasets).

In the last chapter, Chapter 8, we draw some general conclusions about our work. We
also present in this chapter the work we are currently undergoing and plan other research
of near term and long term future.
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Overview of the Domain
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The purpose of this chapter is to present a general overview and familiarize our reader, if
not already the case, with the two large domains around which our work revolves: Complex
Data Mining (in Section 2.1) and Semi-Supervised Clustering (in Section 2.2). We discuss
for each domain the motivations, the difficulties that arise and some of the solutions present
in the literature. All along this chapter, we relate our work to the domain and position our
proposals relative to existing solutions.

2.1 Complex Data Mining

In this section, we present a general overview of the domain of Complex Data Mining.
Using the example of a Wikipedia article, we incrementally single out the particularities
of complex data. In Section 2.1.1, we identify and summarize the most important five
specificities that define complex data, and we point out how our proposals address them.
We further detail some of the identified specificities (in Sections 2.1.2, 2.1.3 and 2.1.4), by
presenting the difficulties they pose and some of the existing solutions in the literature.
Each of these subsections ends with a paragraph in which we position our work.

Complex Data Mining is a very vast domain, incorporating a large range of related
problems. A definition of Data Mining is the computational process of discovering patterns in
large data sets involving methods issued from the domains of artificial intelligence, machine
learning, statistics, and database systems. Complex Data Mining is the application of Data
Mining to Complex Data, i.e., data with a series of particularities that we identify later in
this section, and which is a non-standard input for classical data mining algorithms.
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Vectorial description space. The input data format for classical data mining algorithms
is the (attribute, value) pair format. In this format, each individual is described by a set
of measurements over a set of attributes. Each measurement is (a) a real value (numeric
attributes), (b) a choice from a set of available options (categorical attributes) or (c)
a value of true or false (boolean attributes). When considering the numeric variables,
this format can be associated with a multidimensional vectorial description space, in
which each individual is described by its measurements vector. The assumption is that, in
this multidimensional description vectorial space, machine learning algorithms are efficient
(e.g., it is separable by means of a classification algorithm).

Complex Data Complex data are profoundly heterogeneous data. Excepting the classic
(attribute, value) numeric format, a complex document can contain data of different natures
(e.g., text, images, video, audio etc.). These data are interlinked through the structure (e.g.,
titles, paragraphs, sections) of the complex document in which they reside. In addition,
complex data can have expert knowledge attached (e.g., expert categorize documents using
labels). Sometimes, complex data have attached a temporal dimension: it either records the
evolution of an entity /object over time, or the complex document suffers modifications over
time.

Each of the evoked particularities are facets of the considered complex document and
they all must be taken into account in the learning process in order to infer complete
knowledge [Zighed et al. 2009]. On a more abstract level, semantics are the main challenge
when dealing with complex data. Complex data come in high volumes and many different
types, and the main objective is to piece together the underlying knowledge and recreate
the semantic links. Semantics are crucial for the comprehension of the generated results,
especially from a human point of view. The semantic representation of complex data can
be improved by using the freely accessible resources of the new Semantic Web. Knowledge
repositories are increasingly available, most often under the form of (a) ontologies, such as
the general purpose DBpedia! [Bizer et al. 2009] and Freebase?, which are further inter-
linked by projects such as Linking Open Data® of (b) more specialized datasets, issued from
the domains of Social Sciences and Humanities (e.g., History, Communication sciences, So-
ciology etc.). It is not uncommon to tap into these distributed external repositories in order
to introduce semantics into the learning process. Leveraging semantics and the temporal
dimension into the analysis of complex data are the main research challenges of our work,
presented in this thesis.

Let’s take an example! Figure 2.1 depicts the complex document which is the Wikipedia
article? about the country of France. The different components of the complex document
are highlighted and numbered. The documents is structured, having a title (denoted by
number 6), subtitles, a table of content etc. The main description is in the main column,
while additional information is given in the side (right) column. In some applications, ad-
ditional information can be derived from the structure of the complex documents (e.g., the

. http://www.dbpedia.org

. http://www.freebase.com/

. http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
. http://en.wikipedia.org/wiki/France
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Figure 2.1 — A Wikipedia article is a complex document, containing text (1), images (2),
audio (3), numeric indicators (4), links to other pages (5) and a structure (6).

structure of a social network, i.e., how users are interlinked, is sometimes more informative
than the content posted by the users).

In Figure 2.1, text (numbered 1) is mainly used to give the information about geographic
position, history, political system etc. Data of other natures could be used to complete the
information. Images (number 2) are added to portray the country’s flag, emblem and ge-
ographic map. Audio data (number 3) is included to give the national anthem and even
video is used to present specific events (e.g., in the original Wikipedia article, a video se-
quence is used to show the French territorial evolution from 985 to 1947). Information like
the country’s surface, population, gross domestic product (GDP), geographic coordinates
etc. are given in an (attribute, value) numerical format (number 4). Finally, hyperlinks
(number 5) are present in the text, most often linking this article with other articles. Hy-
perlinks can also point towards external resources in a knowledge ontology, therefore
linking the complex document to structured information and, also, with more semantics.
The complex data can also have a temporal dimension. In the Wikipedia article, the
data can be updated yearly with the latest information about political events. Furthermore,
the track of past values for social and economic indicators are good hints for current events
(e.g., high levels of debt and leverage in the banking system were early indicators of the
economic crisis of 2008).

2.1.1 Specificities of complex data

In the following, we summarize and structure the before mentioned specificities of com-
plex data.
— diverse nature of data. (text, image or audio/video) Dealing with non-numeric
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data raises problems, out of which we mention the fact that (a) they are not directly
“understandable” by a machine (i.e., they need to be translated first to a numerical
space) and (b) the numerical space in which they are translated captures few semantic
information and, consequently, machine learning algorithms exhibit low performances.
Some approaches (more details in Section 2.1.2) deal with this problem by using data
of different natures (e.g., images and text) to better guide the learning process.

— additional information (e.g., external knowledge) External information or resources
might be available to complete the semantic information present in the data. This
additional information can be under the form of (a) expert provided tags of labels or
(b) interlinked knowledge repositories (i.e., ontologies).

— temporal /dynamic dimension. It often happens that the same entity is described
according to the same characteristics at different times or different places (e.g., a pa-
tient may often consult several doctors, at different moments of time). These different
data are associated with the same entity and the complex data describes the evolution
of the entity in the given description space. A special kind of temporal data is the
dynamic data, which is available as a stream (this data cannot be stored and it must
be analyzed online). We give more details about the temporal dimension and dynamic
data in Section 2.1.3.

— high dimensionality. Taking into account data of multiple natures and external
knowledge repositories raises dimensionality problems. This dimensionality problem
can either concern the high volumes of data that need to be dealt with (the “scalability”
problem), or, most often, the high dimensionality of the description space (the “curse
of dimensionality”). In Section 2.1.4, we present in detail how this problem affects the
learning process and some existing solutions.

— distributed and diverse sources. The complex data can originate from different
sources, which, furthermore, do not need to be collocated. This is not a new problem
(e.g., in older times, the same information could be found in different books, in differ-
ent libraries), but it has been exacerbated with the arrival of the Web 2.0. Information
is nowadays essentially distributed into many sources, instead of being centralized in
libraries. The retrieval paradigm also shifted from classification (e.g., sorting books in
a library based on a set of criteria) to searching (e.g., modern days web-search engines
query multiple distributed knowledge repositories to compile an answer).

Positioning our work In our work, we have addressed multiple learning tasks related to
the specificities of complex data identified here above. We deal with complex data of two
different natures. We deal with image data in Chapter 5, in which we propose a method
to introduce semantic knowledge into the image numerical representation. We deal with
textual data in Chapter 6, in which we present address the tasks of topic extraction, topic
labeling and topic evaluation. Topic labeling is important for the human comprehension of
extracted labels, whereas for the topic evaluation we employ semantic knowledge.
Leveraging semantic information into data numerical representation and into the
learning algorithms is one of the central research challenges of this thesis. In Chapter 5,
we deal specifically with embedding semantic information under the form of labels into the
numeric representation of images. In Chapter 6 we use external semantic resource (i.e.,
WordNet) for mapping the statistically constructed topics to a semantic-aware structure
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and for evaluating and improving topics extracted from text. The second research challenge
that we address in our work is the temporal dimension of complex data. In Chapter 3 we
propose a new temporal-aware constrained clustering algorithm (TDCK-Means), which con-
structs temporally coherent clusters and contiguously segments the temporal observations
belonging to an entity.

In the following subsections, we further detail some of the specificities of complex data
(i.e., dealing data of different natures, the temporal dimension and the dimensionality), we
show some of the difficulties associated with each one and some of the solutions present in
the literature.

2.1.2 Dealing with complex data of different natures

Traditional Data Mining algorithms (e.g., clustering algorithm, classification tree learn-
ing algorithms etc.) were not designed to deal with data of diverse natures. Text and image
are the two natures of data most widely used (for example in Internet), but other are also
popular, like the audio and video. The difficulty in analyzing data of different natures is
that, while they are easy to be transformed, stored and reproduced into/from a digital
format, this format captures little semantic information needed by machine learning algo-
rithms. Therefore, one of the main challenges when dealing with data of different natures is
to translate them into a semantic-aware numeric description space, on which the results of
a machine learning algorithm are “relevant”. In our context, we consider results “relevant”
when, in addition to being the answer to a given task, they are also comprehensible for a
human being. Therefore, we summarize the difficulties related to the most common natures
of complex data, as follows:

— text. The morphological and syntactic rules of languages are not directly machine
“comprehensible”. Furthermore, in most representations, the text is encoded at the
level of a character and the presence of a given character (e.g., the character ‘b’ or
the space) gives almost no hints about the subject of the text.

— images. The native digital format for images is the pixel based format. An image is
represented as a matrix of pixels, where each pixel has a certain color. Low level image
features (e.g., the pixel’s color) capture very little of the semantics of the image (e.g.,
the objects represented in the image). Passing from low-level features to high-level
features, while capturing the semantics of the image, is known as the semantic gap.

— video. The video is digitally represented as a sequence of images, therefore video data
can be considered as image data with a temporal component |Zaiane et al. 2003].
Consequently, the difficulties of processing video data inherit the those concerning
images, to which new ones are added with respect of the temporal evolution (e.g.,
tracking objects, finding patterns in the sequence of images etc.).

— audio. Audio data is digitally represented by the frequencies of the sound present
in the audio document. Knowing the presence of a certain frequency in an audio file
gives little information about the overall genre of music. Other, more high-level tasks
(e.g., speech recognition |[de Andrade Bresolin et al. 2008]), are even more difficult
without thorough pre-processing.

The above mentioned types of data can be translated into a numeric description space,

on which classical machine learning algorithms can be applied. The general schema of this
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Figure 2.2 — Conceptual schema of how classical numeric data, image data, or text data
could be used with a traditional Data Mining algorithm.

process is represented in Figure 2.2. Unlike classic numeric data, data of other types need
first to have a numeric representation constructed. The keypoint is to embed enough se-
mantics into the newly created representation so that the results obtained by the machine
learning algorithm are “relevant” (as discussed earlier in this section). The schema pre-
sented in Figure 2.2 considers the case when knowledge is inferred from only one type of
data. Learning simultaneously from data of multiple types is the field of information fusion
(we discuss using together text and images later in this section).

Most often, texts are transformed into a semantically-aware numeric representation by
using the “bag-of-features” representation. The underlying assumption is that words that
have similar meanings appear often together and that the semantics of a text is captured by
the co-occurrence of certain words. This representation is presented in detail in Section 6.2
(p- 128). In a nutshell, after a preprocessing which usually involves removing common words
and reducing words to their lemma, texts are represented as an orderless distribution of
frequencies over words.

For images, a similar representation is used, called the “bag-of-features” representation.
This representation is presented in detail in Section 5.1.2 (p. 100). Images are represented
similar to texts, with the difference that the place of words is taken by visual words. The
visual words are abstractions (normally created though means of clustering) of low-level
patch descriptions. They serve a similar purpose as words in the “bag-of-words” representa-
tion: they are predictive for the presence of a certain “topic” in an image (e.g., visual words
constructed from the patches extracted from an eye are predictors for the presence of an
eye in the photo, which itself is a good predictor for the presence of a face and a human).

Using both text and image for learning tasks. Multimedia information is intrinsi-
cally multi-modal |[Bekkerman & Jeon 2007|. We interpret the word “modality” as the type
of input / nature of the data. Learning from only one nature of data at a time (as described
earlier and in Chapters 5 and 6) is called an uni-modal approach. The results obtained using
uni-modal approaches could be aggregated to infer the overall knowledge, but in practice
better results are obtained when using a multi-modal approach |Zaiane et al. 2003], in which
information from different modalities is simultaneously available to the learning algorithm
(e.g., the field of information fusion). For example, image captions (i.e., the text associated
with an image) and low-level image features are different types of input to an image pro-
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cessing system and can, therefore, be considered as two separate modalities. Image captions
tend to describe events captured on the image (i.e., they capture semantic information),
while image features convey visual information to the system. Consequently, using multiple
modalities in the learning process can yield higher performances, as each modality can be
used to guide the learning process of another.

We present some of the most common learning tasks that can benefit from using both
the text and image natures of data. These tasks share a common trait: low-level visual
features (e.g., color, texture, shape, spatial layout, local descriptors etc.) used to describe
images capture very little of the semantics of images. Their performance can be improved
by using text alongside images.

— Image classification. Object-based image classification is challenging due to wide
variation in object appearance, pose, and illumination effects. Low-level image features
are far removed from the semantics of the scene, making it difficult to use them to
infer object presence, and it is expensive to obtain enough manually labeled examples
from which to learn. To cope with these constraints, text that often accompanies
visual data can be leveraged to learn more robust models. Such approaches [Mooney
et al. 2008, Wang et al. 2009] make use of collections of unlabeled images and their
textual snippets, usually issued from the Internet.

— Automatic images categorization. Unlike the image classification application, in
automatic categorization there are no predefined classes. Images are automatically
organized based on their similarity through means of clustering. Being fully unsu-
pervised, clustering methods often demonstrate poor performance when performed
based only on low-level image features. Clustering results can be improved by using
a multi-modal learning paradigm, where image captions and annotations are used
alongside image features. Text has been used to help image clustering in number of
applications, such as image clustering [Bekkerman & Jeon 2007|, in Web image search
results clustering [Cai et al. 2004] or image sense discrimination |Loeff et al. 2006].

— Improving image numerical description. Low performances in the tasks de-
scribed earlier (i.e., image categorization and image clustering) is usually due to the
low semantic quality of the image numerical representation: the images are translated
into a numerical space which is not easily learnable by machine learning algorithms.
Performances can be improved by using the text associated with the images, either
in the learning algorithm (as previously seen) or in the creation of the numeric repre-
sentation |Quattoni et al. 2007, Ji et al. 2010|. The goal is to embed textual semantics
into the image representation and to improve learning in future image-related learn-
ing problems. Our work with the images (in Chapter 5), deals with improving the
numerical description.

— Content-based image retrieval. Content-based image retrieval deals with efficient
image searching, browsing and retrieval, with applications in crime prevention, fash-
ion, publishing, medicine, architecture, etc. Humans tend to use high-level features
(concepts), such as keywords, text descriptors, to search and interpret images and
measure their similarity. Features automatically extracted using computer vision tech-
niques are mostly low-level features and, in general, there is no direct link between
the high-level concepts and the low-level features [Sethi et al. 2001] (also called the
“semantic gap”). Some content-based image retrieval systems [Cai et al. 2004, Zhuang
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et al. 1999] use both the visual content of images and the textual information for
bridging the semantic gap. Other techniques exist which do not rely on the usage
of associated text [Liu et al. 2007] (i.e., (a) using an object ontology, (b) associat-
ing low-level features with query concepts, (c) introducing relevance feedback into
the retrieval loop or (d) generating semantic template to support high-level image
retrieval).

— Automatic image annotation. This task deals with automatically annotating im-
ages with one or multiple labels, accordingly to their content. One of the difficulties is
the huge number of candidate labels and scarce training examples. Automatic image
annotation systems [Lu et al. 2009, Yang et al. 2010] search to find a correspondence
between text words and the visual features describing an image. This is most often
achieved by using a machine translation approach, where the image-text pairs are
seen as bilingual texts and alignment methods are applied |Barnard et al. 2003].

— Human-computer interface systems use multiple modes of input and output to
increase robustness in the presence of noise (e.g. by performing audio-visual speech
recognition) and to improve the naturalness of the interaction (e.g. by allowing gesture
input in addition to speech). Such systems often employ classifiers based on supervised
learning methods, which require manually labeled data. This usually is costly, espe-
cially for systems that must handle multiple users and realistic (noisy) environments.
Semi-supervised learning techniques can be leveraged [Christoudias et al. 2006] to
learn multi-modal (i.e., audio-visual speech and gesture) classifiers, thus eliminating
the need of obtaining large amounts of labeled data.

Positioning our work In our work concerning textual data (presented in Chapter 6),
we have used a classical “bag-of-words” representation, and concentrated mainly on intro-
ducing semantic knowledge into topic evaluation, through a concept-topic mapping. Our
work concerning image data (presented in Chapter 5) deals with embedding semantics into
the image representation. We show how a semantic-enriched representation can be obtained
starting from a baseline representation by employing non-positional labels (i.e., only the
presence of objects in the images is known, but not their position).

In our work, we have not dealt with text and image simultaneously. One of the venues
in this direction would be to use text instead of non-positional labels. Whatsoever, we
use a complete labeling paradigm, in which the absence of a label implies the absence of
the object in the image, Passing from the strict labeling to a more relaxed labeling (i.e.,
authorize missing labels) is one of the perspectives of our work and discussed in Sections 5.3.2
(p. 108). Once this passing done, using the text alongside images is foreseeable. Another
research direction would be to embed into images semantic information originating from a
concept hierarchy, by passing through text and using the mapping between topics (extracted
from text) and concepts.

2.1.3 Temporal/dynamic dimension

Introducing the temporal dimension usually changes the definition of the learning prob-
lem: the description of entities in contextualized (i.e., the description is valid for a period
of time) and new learning problems emerge, e.g., detecting evolutions and trends, tracking
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through time etc. Leveraging and interpreting the temporal dimension is one of the central
research challenges of this thesis and intrinsically connected to complex data. As discussed
earlier, complex data often have a temporal dimension, describing the evolution of a num-
ber of entities throughout a period of time. For example, in Chapter 3, we detect typical
evolutions of entities and we apply our proposal to a dataset which records the value of a
number of socio-economical indicators for a set of countries, over a period of 50 years.

Temporal Data Mining is the sub-domain of Data Mining, closely associated with

Complex Data Analysis, which deals with detecting surprising regularities in data with
temporal inter-dependencies. Datasets which contain temporal inter-dependencies are called
sequential datasets, where sequential data are data ordered by some index. In the case of
temporal datasets, the index is the timestamp associated with the observations. Time-series
is a popular class of sequential data, which has enjoyed a lot of attention, especially from
the statistics community. Time-Series Analysis [Brillinger 2001] has many applications, out
of which we mention weather forecast, financial and stock market predictions etc. A number
of differences exist between Temporal Data Mining and Time-Series Analysis [Laxman &
Sastry 2006], the most important being (a) the size and the nature of the studied dataset and
(b) the purpose of the study. Temporal Data Analysis deals with prohibitive size datasets,
and the data is not always numerical. This are two of the characteristics of complex data.
Furthermore, the purpose of Temporal Data Mining goes beyond the forecast of futures
values in the series. Some of the learning tasks in Temporal Data Mining can be summarized
as follows [Laxman & Sastry 2006]:

— prediction. The prediction task has to do with forecasting (typically) future values
of the time series based on its past samples. In order to do this, one needs to build a
predictive model [Dietterich & Michalski 1985, Hastie et al. 2005].

— classification. In sequence classification, each sequence is assumed to belong to one
of finitely many (predefined) classes or categories and the goal is to automatically de-
termine the corresponding category for the given input sequence. Applications of se-
quence classification include speech recognition [O’Shaughnessy 2000,Gold et al. 2011],
gesture recognition [Darrell & Pentland 1993], handwritten word recognition [Plam-
ondon & Srihari 2000).

— clustering. Clustering of sequences or time series |Kisilevich et al. 2010] is concerned
with grouping a collection of time series (or sequences) based on their similarity.
Applications are extremely variate and include analyzing patterns in web activity
logs, patterns in weather data [Hoffman et al. 2008] and trajectories of moving ob-
jects [Nanni & Pedreschi 2006], finding similar trends in financial data, regrouping of
similar biological sequences like proteins or nucleic acids [Osato et al. 2002].

— search and retrieval. This task problem is concerned with efficiently locating sub-
sequences in a database of sequences. Query-based searches have been extensively
studied in language and automata theory. While the problem of efficiently locating
exact matches of substrings is well solved, the situation is quite different when look-
ing for approximate matches [Navarro 2001]. In typical data mining applications like
content-based retrieval, it is approximate matching that we are more interested in.

— pattern discovery. Unlike the search and retrieval task, in pattern discovery
there is no specific query with which to search the dataset. The objective is simply
to unearth all patterns of interest. Two popular frameworks for frequent pattern dis-
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covery are sequential patterns [Agrawal & Srikant 1995, Fournier-Viger et al. 2011]
and episodes [Mannila et al. 1997|. Sequential pattern mining is essentially an ex-
tension of the original association rule mining framework proposed for a database of
unordered transaction records [Agrawal et al. 1993], which is known as the Apriori
algorithm. The extensions deals with incorporating the temporal ordering information
into the patterns being discovered. In the frequent episodes framework, we are given
a collection of sequences and the task is to discover (ordered) sequences of items (i.e.
sequential patterns) that occur in sufficiently many of those sequences.

Dynamic data There is fundamental difference between temporal data and dynamic
data. Dynamic data are data evolving over time, as new data arrive and old data become
obsolete. Furthermore, the updates may change the structures learned so far. Dynamic data
is intimately linked with the Internet, where enormous quantities of data are constantly
created and need to be dealt with. These data are usually available as a stream, arriving at
a rapid rate and cannot be stored for later analyzing.

The temporal-aware algorithms described so far in this section (as well as our proposed
TDCK-Means algorithm, which will be described later in Chapter 3) consider the temporal
data as recordings of the state of a set of individuals at different moments of time (e.g.,
macro-economical indicators for countries). These data are stored and studied offline (a
posteriori), usually for determining causalities, evolutions etc. Such “static” algorithms are
not appropriate for dynamic data, because (a) huge amounts of data are accumulated over
time and cannot be stored, (b) the generative distribution might change over time (which
is known in supervised learning as “concept drift”), (c) only one-pass access to the data is
available and (d) the data arrives at a rapid rate. Many online algorithms have been pro-
posed, out of which we mention CluStream [Aggarwal et al. 2003|, which performs an online
summarization and an offline clustering, and Single pass K-Means [Farnstrom et al. 2000],
which is an extension of K-Means for streams and which performs the clustering in batches
that fit into memory.

Positioning our work Our work concerning the temporal dimension does not deal with
the dynamic data paradigm, therefore we consider that our dataset is stored in a database
and available for querying and transforming to our needs.

The learning task for which our TDCK-Means temporal clustering algorithm was con-
structed is not a classical clustering task (as defined in Temporal Data Mining), but rather
more similar to sequential itemset mining. Among the above defined tasks of Temporal
Data Mining, TDCK-Means would be classified as a special case of pattern discovery.
There is a fundamental difference between the algorithms in the clustering category and
TDCK-Means: the nature of the individuals that they cluster. For the former, an individual
is an entire time-series: they employ similarity measures between time-series and they seek
to regroup similar time-series together. For the latter (TDCK-Means), the individuals that
it clusters are the observations (i.e., an observation is the description/state of an entity at a
given time moment, a tuple (entity, timestamp, description). A time-series is composed of
all the observations corresponding to an entity for all the moments of time). TDCK-Means
searches to detect groups of similar observations (preferably contiguous, therefore parts of
a time-series), in order to detect similar evolutions.
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Figure 2.3 — Desired output: (a) the evolution phases and the entity trajectories, (b) the
observations of 3 entities contiguously partitioned into 5 clusters.

2.1.4 High data dimensionality

Taking into account data of multiple natures and external knowledge repositories raises
dimensionality problems. This dimensionality problems are usually concerning the high
dimensionality of the description space. |[Kriegel et al. 2011| identify 4 problem related with
the high dimensionality: (a) the optimization problem, (b) the concentration effect, (c)
presence of relevant and irrelevant attributes and (d) the correlation among attributes.

The optimization problem states that the difficulty of any global optimization ap-
proach increases exponentially with an increasing number of dimensions [Bellman & Kal-
aba 1959|. Considering the task of clustering, the fitting of the functions explaining clusters
becomes more difficult with more degrees of freedom. The concentration effect of dis-
tances is identified in [Beyer et al. 1999, Hinneburg et al. 2000]. As the dimensionality of
the description space increases, distances to near and to far neighbors become more and
more similar. In other words, the separability of the description space decreases with the
increase in the number of dimensions. For a clustering task, this effect has been shown
true [Francois et al. 2007, Houle et al. 2010] only within clusters, but not between different
clusters as long as the clusters are well separated. Another problem is the presence of rel-
evant and irrelevant attributes. In a large description space, sometimes only a subset
of features is relevant for the learning algorithm. For example, in a classification task, the
description space depicted in Figure 2.3a is separable only on a subset of features (shown on
the horizontal axis). Together with the concentration effect, this problem causes the sharp
decrease in the performance of distance function-based learning algorithms that assign equal
weights to all dimensions. The forth problems is the correlation among attributes. In
the context of machine learning (supervised or unsupervised), a useful attribute needs to
portray new information. Figure 2.3b shows that case when a subset of attributes are cor-
related among themselves. Features in the subset depicted on the vertical axis do not bring
any new information in the learning process, since their values can be deduced from those
depicted on the horizontal axis. Feature correlation only augments the dimension of the
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description space, without increasing the relevance of the descriptive space.

Our work presented in Chapter 4 is specifically targeted at the relevance of the descrip-
tive space, with respect to a given dataset. In Section 4.2 (p. 63), we identify three types of
solutions for this problem:

— feature selection. Feature selection techniques [Lallich & Rakotomalala 2000, Mo
& Huang 2011] seek to filter the original feature set in order to remove redundant
features.

— feature extraction. Feature extraction involves generating a new set of features
through means of functional mapping so that the new description space is relevant
for the learning task. Examples of such approaches are the SVM’s kernel [Cortes &
Vapnik 1995] and principal component analysis (PCA) [Dunteman 1989].

— feature construction. Feature construction is a process that discovers missing in-
formation about the relationships between features. Most constructive induction sys-
tems [Pagallo & Haussler 1990, Zheng 1998| construct features as conjunctions or
disjunctions of initial attributes.

There are fundamental differences between feature extraction and feature construc-
tion algorithms: (i) the comprehensibility of the new description space, (ii) the underlying
purpose of the process and (iii) the dimension of the new space. (i) The description space
resulted from feature extraction algorithms is either completely synthetic (for PCA) or hid-
den/functioning as a black box (for SVM). This renders the interpretation of the results
rather difficult. In the case of feature construction, the new attributes are easily compre-
hensible (e.g., a feature entitled motorbike and driver is easier to interpret than the third
axis of PCA). (ii) The underlying purpose of feature extraction is just improving the nu-
merical relevance of the description space, whereas the purpose of feature construction is
also discovering hidden relations between attributes (e.g., the correlation of people and grass
for a subset of pictures has a certain meaning when portraying a barbecue). (iii) Feature
extraction algorithms either output a description space of (a) a lower (e.g., for PCA or
Manifold Learning [Huo et al. 2006]) or (b) a higher (e.g., the SVM kernel into a very
high dimensional space, even an infinitely dimensional space for the RBF kernel [Chang
et al. 2010]) dimensionality than the original space. Conversely, the feature construction
algorithms invariably increase the number of dimensions.

Positioning our work Our work concerning the description space and presented in Chap-
ter 4 proposes a feature construction algorithm for discovering missing semantic links be-
tween the attributes describing a dataset. The novelty of the proposed algorithm is that,
unlike the rest of the feature construction algorithms present in literature, we construct
features in an unsupervised context, based only on the correlations present in the dataset.
Our uFC algorithm adapts the description space to the semantics of the given dataset. Our
experiments in Section 4.6 (p. 75) show that the constructed features are highly compre-
hensible, while the constructed description space achieves a lesser total correlation between
dimensions.
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2.2 Semi-Supervised Clustering

In the previous sections, we have shown that complex data often comes bundled with
additional information. For example, researchers in human sciences tag documents for easy
referencing, medical doctors annotate the files of their patients. The modern Internet is
a prolific source of additional information. Many photo sharing online platforms (e.g., In-
stagram ®, Flickr®) allow their users to tag the presence of certain objects or persons in
their photos. Furthermore, general purpose knowledge ontologies (e.g., Dbpedia, Freebase)
are freely accessible and contain millions of records of general fact, such as information
about countries, persons, events, movies etc. They are interconnected with more specific
ontologies, depicting facts about geo-localization, transport infrastructure etc. Together,
they form an enormous inter-linked reservoir of knowledge, that can be used as guidance in
many learning applications.

Making best use of the knowledge. In traditional machine learning, the learning
guidance is performed through supervision, by showing the algorithm a number of cor-
rectly classified examples and demanding it to learn to distinguish between classes. This
field of Machine Learning is mature enough, and modern classification algorithm (such as
SVM [Cortes & Vapnik 1995]) show impressive results. There is a number of applications re-
lated to complex data for which the supervised learning paradigm can difficultly be applied
because (a) there might not be enough examples for each class, (b) not all classes are known
beforehand (sometimes not even the number of classes is known) or (c) class information is
not available at all, the only available information is about the relations between a subset of
individuals. For example, in an image dataset, the presence of some of the objects might be
labeled in some of the images. For this application, a supervised learning approach cannot
be employed to learn how to differentiate between objects, since the quantity of examples
for each label is not sufficient and no assumption can be made about the total number of
objects.

Leveraging partial expert knowledge is the domain of semi-supervised learning. Partial
knowledge is either not complete (e.g., only the relations between certain individuals are
known) or simply not enough examples are known for supervised algorithms to function.
The domains of semi-supervised learning can be broadly be divided into two categories:
semi-supervised classification and semi-supervised clustering. In order to better differentiate
the two approaches, we take into account two dimensions: (i) the type of the learning
problem to be solved and (ii) the quantity of available supervision. The learning problem
can be essentially supervised (i.e., learning to distinguish between predefined classes) or
non-supervised (i.e., to discover automatically a typology of the data).

— semi-supervised classification [Zhu 2005, Chapelle et al. 2006] is an essentially su-
pervised task, and it can be applied to supervised learning problems, in the presence
of low quantities of supervision. Such methods can learn from a low number of exam-
ples for each category, by enabling the learning from both labeled and unlabeled data.
They still inherit from supervised methods a number of restrictions, among which (a)

5. http://instagram.com/
6. http://www.flickr.com/
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the number of categories must be fixed and known beforehand and (b) labeled exam-
ples must be present for each category. These restrictions can prove to be too severe
for complex data, for which the classification typology might not be known before-
hand (or not even the number of classes). Furthermore, supervised information might
be available only under the form of some pairwise connections (e.g., it can be known
the fact that two individuals should be classified together, but no other information
is known towards the category under which they should be classified). We, therefore,
consider that semi-supervised classification approaches are not completely adapted to
complex data.

— semi-supervised clustering is an essentially unsupervised task, which is adapted
to handle non-supervised learning problems, for which some supervised information
is available. These methods deal with using the supervision in order to guide the clus-
tering. Semi-supervised clustering is useful when (i) classes are not known beforehand
or not enough examples are available for each class and (ii) the available knowledge
is not representative. We consider that this approach is more suitable to take into ac-
count the additional information embedded in complex data and, therefore, we further
detail it in the rest of this section.
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Figure 2.4 — Three clustering problems: (a) an easy problem, (b) a difficult problem and (c)
an impossible problem.

Why guide the clustering? Traditional clustering algorithms are adapted to structure
data from previously unknown domains (e.g., the Yahoo! problem [Cohn et al. 2003]), but
it fails to raise to the expectations when some background knowledge exists. For example,
if the data naturally form tight clusters that are well-separated (as in Figure 2.4a), there
is no need for background knowledge at all, any reasonable clustering algorithm will detect
the desired clusters. Likewise, if no distinction can be made between classes in description
space (as in Figure 2.4c), then little useful information can be found in the data itself, and
supervision will again be of little use. Background knowledge will therefore be most useful
when patterns are at least partially present in the data, but a clustering algorithm will
not detect them correctly without assistance (as seen in Figure 2.4b). The idea is to use
the available background knowledge to guide the clustering algorithm to find the “correct”
partition.
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How to model the supervision? The expert knowledge can be modeled either by using
class labels (i.e., like in supervised learning), or by using constraints. Constraints can be
set, for example, on a subset of individuals or on the clusters (e.g., when we want to form
clusters respecting a certain condition apart the implicit cohesion). The constraints most
used in the literature [Davidson & Basu 2007 are the constraints that model the relations
between pairs of individuals, the pairwise constraints.

In [Wagstaff & Cardie 2000], two types of pairwise constraints are introduced. A “must-
link” constraints between individuals x and y means that in the created partition, x and
y must be placed into the same cluster. Similarly, a “cannot-link” constraint between z
and y means that the two individuals cannot be placed into the same cluster. Must-link
constraints are transitive (i.e., (z,y) € M and (y,2) € M = (z,2) € M, where M is the
set of must-link constraints), which means that the pairwise constraints set can be enriched
with new constraints by calculating the transitive closure of the must-link set.

In the next two paragraphs, we show that instance-level constraints are very versatile,
being capable to model different types of information (e.g., class labels, cluster conditions),
as well as incomplete information.

Modeling different types of information using instance-level constraints Super-
vision under the form of class labels can be considered a special case of supervision using
pairwise constraints. Given a subset of labeled individuals, the expert information can be
translated into the pairwise constraints form by adding must-link constraints between all
individuals sharing a label and cannot-link constraints between any two individuals labeled
differently. Furthermore, supervision in the form of constraints is generally more practical
than providing class labels in the clustering framework [Basu et al. 2003, since true labels
may be unknown a priori and it is easier for a human expert to specify whether pairs of
points belong to the same cluster or different clusters. For example, in [Cohn et al. 2003],
human interaction is used to iterativelly ameliorate a document partition, by letting the
user decide which pairs of documents are wrongly classified.

We have a similar situation for cluster-level constraints. For example, in [Davidson &
Ravi 2005], two types of cluster level constraints are defined: (a) the e-constraint enforces
each point in a cluster to have a neighbor within a distance of at most ¢ (i.e., constraint
to prevent “rare” clusters, in which individuals are distanced); (b) the d-constraint enforces
that every individual in a cluster to be at a distance of at least ¢ from every individual in
every other cluster (i.e., constraint to enforce the separability of clusters). The two cluster-
level constraints can be easily specified using instance-level constraints: the e-constraint can
be represented as a disjunction of must-link constraints (for every individual x, must-link
to at least another individual y so that ||z — y|| < e) and the d-constraint translates by a
conjunction of must-link constraints (for every individual x, must-link to all individuals y,
so that ||z — y|| < 0).

In Chapter 3, we use the pairwise constraints to model the temporal information, when
trying to contiguously segment series of observations. We add must-link constraints be-
tween each pair of observations belonging to the same entity and inflict a penalty inversely
proportional with their time difference when breaking the constraint.
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Partial information vs. complete information Introducing external information into
clustering is not a new domain. One of the oldest applications is clustering geographic-
related data, using clustering with spatial contiguity constraints. There is a fundamental
difference between such approaches and the semi-supervised approaches: the geographic in-
formation is available for all individuals, whereas in semi-supervised clustering the supervi-
sion is available only for a subset of individuals. Consequently, in clustering with contiguity
constraints, a quick solution is to modify the dissimilarity measure to take into account
the geographic information. For example, [Webster & Burrough 1972| adds a factor to the

hij
d:j = dij X <1 — €w>

where d;; is the modified measure between individuals ¢ and j , d;; is the original value of

dissimilarity measure:

the measure, h;; is the geographic distance between i and j and w is a weighting factor. This
type of supervision is a special type of the semi-supervised case. The approaches presented
in Section 2.2.1 also modify the similarity measure, but they use a supervised algorithm to
leverage the partial information.

Taxonomy Traditional clustering algorithms employ a given similarity measure and a
given search strategy in the solution space, in order to construct a partition of coherent
clusters. The available supervised knowledge is leveraged by the semi-supervised clustering
algorithms to modify either (or both) the similarity measure or the search strategy. There-
fore, semi-supervised clustering methods can be divided [Basu et al. 2003, Grira et al. 2005]
into two classes: (a) the similarity-based approaches, which seek to learn new similarity mea-
sures in order to satisfy the constraints, and (b) the search-based approached in which the
clustering algorithm itself is modified. The following two sections (2.2.1 and 2.2.2) present
in more detail each type of approach, together with some examples present in the literature.

2.2.1 Similarity-based approaches

Input
Dataset

—>i Data
Slmllarlty metric Classical clustering

learning ) algorithm J Partition
Semi-supervised / @

constraints

Figure 2.5 — General schema of similarity-based semi-supervised clustering approaches.

In similarity-based semi-supervised clustering approaches, an existing clustering algo-
rithm that uses a similarity metric is employed. However, instead of using one of the existing
predefined similarity measures [Lesot et al. 2009], the similarity metric used by these ap-
proaches is first trained to satisfy the labels or constraints in the supervised data. The
general schema of this two phase process is given in Figure 2.5. In phase 1, the dataset is
used together with the must-link and cannot-link constraints to train the similarity measure.
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In phase 2, the trained similarity measure is used with the dataset in a classical clustering

algorithm.
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Figure 2.6 — The description space before (a) and after (b) training the similarity distance,
in similarity-based approaches.

Training a similarity metric is similar to modifying the description space in order to en-
large the frontiers between groups of clusters. Individuals which are must-linked are pulled
closer together, whereas individuals which are cannot-linked are distanced. Figure 2.6b
shows a simple example of learning a distance function from the constraints given in Fig-
ure 2.6a. Notice that in Figure 2.6b, the input data space has been stretched in the horizontal
dimension and compressed in the vertical dimension, to draw the must-linked individuals
closer and pull the cannot-linked individuals farther apart.

Several distance measures have been used for distance-based constrained clustering:

— Mahalanobis distance trained with convex optimization [Xing et al. 2002, Bar-

Hillel et al. 2003|. A parametrized Euclidean distance of the form ||z1 — z2||la =
V(x1 — 29)TA(21 — 29) is used in [Xing et al. 2002]. A two step optimization algo-

rithm is used to fit the matrix A to the must-link and cannot-link constraints. New
features are created that are linear combinations of the original features. The Relevant
Component Analysis algorithm proposed in |Bar-Hillel et al. 2003] is similar, but uses
a diagonal matrix instead, which boils down to simply assigning weight on dimensions.
In both approaches, the matrix A is responsible for deforming the description space
according to the constraints set.

— Euclidean distance trained with shortest path algorithm [Klein et al. 2002].
These methods start from the assumption that constraints suggest space-level gener-
alizations beyond their explicit instance-level rules: not only should points that are
must-linked be in the same cluster, but the points that are near these points (in the
description space) should probably also be in the same cluster. A distance matrix
between individuals is calculated, the distances of must-linked and cannot-linked in-
dividuals are modified and, in the end, the whole matrix is re-calculated by assigning
as the distance between two individuals the length of the shortest path.

— Kullback-Leibler divergence |[Kullback & Leibler 1951] trained with gradient
descent [Cohn et al. 2003]. Interaction with the user is used in [Cohn et al. 2003]
to acquire the semi-supervised constraints. A textual clustering is performed used a
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naive Bayes algorithm and using the KL divergence to measure the similarity of two
documents. When the user considers that two documents were wrongly grouped in the
same cluster, he/she adds a cannot-link between the two. The constraints are taken
into account by augmenting the KL divergence with a positive weighting function.
The procedure is then reiterated until the user is happy with the result.

One of the strong points of similarity-based approaches is that the additional informa-
tion is taken into account at the level of the similarity measure. Once the measure trained,
any clustering algorithm can be used out of the box, without any modifications. The lit-
erature shows examples of several clustering algorithms, which can be used with trained
distance measures, including single-link [Bilenko & Mooney 2003] and complete-link [Klein
et al. 2002] agglomerative clustering, EM [Cohn et al. 2003, Bar-Hillel et al. 2003], and
KMeans [Bar-Hillel et al. 2003, Xing et al. 2002].

Positioning our work This similarity-based semi-supervised clustering boils down to
dividing the learning task into two: a smaller, simpler problem (i.e., a similarity distance)
is learned in a supervised fashion, using available supervision. The results of the supervised
problem is later used in an unsupervised learning algorithm to improve the results of the
bigger learning problem. We adopt a similar approach in Chapter 5, where we construct
the “bag-of-features” visual vocabulary based on a small labeled image set. We employ a
supervised algorithm to learn the visual words and an unsupervised algorithm to generate
the actual numeric representation and the image clustering.

2.2.2 Search-based approaches

In search-based semi-supervised clustering approaches, the clustering algorithm itself
is modified so that user-provided labels or constraints are used to bias the search for an
appropriate partition. Literature shows several approaches for performing this bias:

— enforcing constraints [Wagstaff & Cardie 2000, Wagstaff et al. 2001]. Initial semi-
supervised algorithms leveraged the additional information by enforcing the pairwise
constraints during the clustering process. These are K-Means-like algorithms, which
modify the cluster assignment step. Rather than performing a nearest centroid as-
signment, a nearest feasible centroid assignment is performed. This involves that con-
straints are never broken (which are called hard pairwise constraints). While such
approaches have shown accuracy improvements, they are particularly sensible to noisy
and contradicting constraints [Davidson & Basu 2007| (which are to be expected in
real-life labeling). Another problem of such approaches is that they are unstable with
regard to the order of presentation of the constraints (i.e., the results greatly vary if
the order is changed) [Hong & Kwong 2009].

— objective function modification [Demiriz et al. 1999,Gao et al. 2006,Lin & Haupt-
mann 2006]. In most relocating clustering algorithm, the search in the solution space
is guided by the employed objective function. Most semi-supervised clustering al-
gorithms modify the objective function, in order to take supervision into account.
In [Demiriz et al. 1999], an extra term is added to quantify the impurity of con-
structed clusters in terms of known class labels. The proposed clustering algorithm



2.2. Semi-Supervised Clustering 27

minimizes the objective function
= B x Cluster _Dispersion + a x Cluster _Impurity

where the parameters o and 8 control the impact of the supervision.

The problems shown by the previous class of algorithms (i.e., algorithms enforcing
constraints) can be solved by allowing constraints to be broken, in which case a
penalty is inflicted. Such constraints are called soft pairwise constraints. In [Basu
et al. 2003, Gao et al. 2006, Lin & Hauptmann 2006|, the must-link and cannot-link
pairwise constraints are also leveraged by modifying the objective function. The ob-
jective function includes penalization terms for each type of constraints and has the
following formula:

T=> Mai—w|P+ D wylli# L+ Y wyl[l =1 (2.1)

T, €EX (z4,25)EM (zi,m5)€C

where:

— X is the given dataset;

— [; is the cluster of individual x;;

— u, is the centroid of cluster /;;

— M is the set of must-link constraints;

— C is the set of cannot-link constraints;

— wjj; is the weight of the must-link constraint between z; and x;;

— w;; is the weight of the cannot-link constraint between z; and z;;

— 1 [state] is a function that returns 1 if state if true and 0 otherwise.

Using such an objective function, the clustering algorithm converges towards a solution

in which the partition breaks as few constraints as possible. In Chapter 3, we propose

a temporal-aware constrained clustering algorithm which follows a similar approach.

— seeding |Basu et al. 2002|. The local optimum reached by a relocating clustering

algorithm, such as K-Means, is influenced by the initial choice of centroids. Random

initialization is usually used in “unsupervised” clustering, but in semi-supervised clus-

tering, this can be done using the supervised information, in a two-phase process. In

the first phase, sets of individuals that should belong to the same cluster are generated

through transitive closure of the must-link constraints. In the second phase, centroids

are initialized based on each of the computed sets and a classical clustering algorithm

is used to further improve them in order to attain a partition with respect to the given

constraints.

The different approaches presented earlier are not incompatible one with another.

In [Basu et al. 2003], for example, a similarity-based approach using a trained Mahalanobis
measure is combined with search-based approach, in which the objective function is modified
to penalize breaking the constraints. The two are integrated into a K-Means-like approach,
in which the centroids are initialized with a seeding strategy, as described here above.

Positioning our work In Chapter 3, we propose a temporal-aware constrained clustering
algorithm, which uses a semi-supervised technique to ensure the contiguous segmentation
of observations. We follow a search-based approach and we guide the clustering algorithm
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by modifying the objective function. In order to ensure the contiguous segmentation of the
temporal observations of an entity, we add soft pairwise must-link constraints between all
observations belonging to the same entity. We penalize breaking these constraints using a
penalization function which is dependent on the time difference between the constraints
(the wj; in Equation 2.1, while w;; are set to zero).
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3.1 Learning task and motivations

We consider that leveraging the temporal dimension into the learning process
is a crucial point and it is one of the central research challenges of this thesis. The temporal
dimension is more than just another descriptive dimension of data, since it profoundly
changes the learning problem. The description of data becomes contextualized (i.e., a certain
description is true during a given time frame) and new learning problems arise: following
the temporal evolution of individuals, detecting trends, topic burstiness, popular events
tracking, etc. The temporal dimension is intimately related to the interactive Web 2.0,
where the time is primordial for many learning tasks. In Section 2.1.3 (p. 16), we have
discussed the difference between temporal algorithms and online (“on the fly”) algorithms.
Online algorithms have seen a lot of attention, especially given the huge amounts of data
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Figure 3.1 — Streamlined schema of how temporal information is used

produced on the Web 2.0. This data cannot be stored and the learning process must be
done using single pass algorithms.

The work presented in this chapter tackles with one of our central research challenges,
i.e., dealing with the temporal dimension of complex data, by employing semi-supervised
clustering techniques. The solutions and the algorithms presented in the following sections
were developed as an answer to a specific learning task: detecting typical evolution patterns.
This specific problem was originally motivated by the research interest of the Political Stud-
ies researchers involved in the IMAGIWEB project (see Annex A). We show in Section 3.6,
that the application of our proposals is not limited to Political Studies datasets. We also
employ our temporal clustering algorithm in a learning task issued from the domain of
Social Network Analysis: detecting user social roles in a social network inferred based on
online discussion forums. Our work concerning the temporal dimension does not concern
the “on the fly” aspect. Our data are stored and we study them offline (a posteriori), in
order to detect evolutions.

Motivation. Researchers in Political Studies have always gathered data and compiled
databases of information. This information often has a temporal component: the evolution
of a certain number of entities is recorded over a period of time. The idea is to inject
the temporal component of the complex data into an automatic learning algorithm and
detect typical evolution patterns. This is particularly interesting for Political Science
researchers, since it would allow detecting hidden connections between the evolution of
certain entities and the certain events that took place later in time (e.g. the rise of extremist
political leaders and later wars). Such an algorithm would also assist the researchers in the
process of creating entity typology: the classification of an entity at a certain moment in
time is closely related to its previous evolution. This is not limited to Political Sciences, but
can be generalized to many other fields of Social Sciences and Humanities. In Psychology, it
is well known that the present mental state of a patient is very much influenced by traumatic
events in his/her past.
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We highlight in Figure 3.1 a schematic representation of the work performed in this
chapter. The data is described in a numeric vectorial space and the main idea is to leverage
the temporal dimension of the complex data together with its description. The temporal in-
formation is used at two levels. It is (a) embedded directly into the distance used to measure
the similarity between instances and it is (b) injected into the clustering algorithm using
semi-supervised techniques. In the case of the political science dataset, the results of the
learning algorithm are typical evolutions. In Section 3.6, we exemplify the use of our pro-
posal to another kind of data: social network data. This dataset describes the daily activity
of users (the entities) on a web forum. The goal is to identify user roles in the underlying
social network. Observations are the working block of our algorithm (i.e., observations are
descriptions of entities at a given timestamp). Therefore, our work deals with clustering
observations, i.e., tuples (entity,timestamp, description), while taking into account the
temporal component and contiguously segmenting the observations belonging to an entity.

The remainder of this chapter is organized as follows. In Section 3.2, we formalize the
structure of the dataset and the objectives of our work. We also give an overview of the
proposed solution. In Section 3.3 we present some existing previous work related to this
specific problem and, in Section 3.4, we present our approach. We introduce the temporal-
aware dissimilarity function, the contiguity penalty function and we combine them in the
TDCK-Means algorithm. In Section 3.5, we present the dataset that we use, the proposed
evaluation measures and the obtained results. In Section 3.6, we apply our algorithms on a
Social Network Analysis task and we show how the TDCK-Means algorithm can be used
to detect behavioral roles, which are in turn used to detect user social roles. Finally, in
Section 3.7, we draw the conclusion and plan some future extensions.

3.2 Formalisation

We consider that the data are described in a numeric vectorial space (see Section 2.1,
p. 9). It is not uncommon for Social Sciences and Humanities scientists to compile such
datasets, which can be converted to a machine readable format with minimal intervention.
We give just a few examples of such datasets that are publicly accessible:

— Compared Political Dataset I [Armingeon et al. 2011|: evolution of 23 democratic

countries over a period of 50 years. [Available online] !;

— Democracy Time-series Data [Norris 2008|: contains data on the social, economic and
political characteristics of 191 countries with over 600 variables from 1971 to 2007.
[Available online] ?;

— Archigos |Goemans et al. 2009]: is a data set with information on leaders in 188
countries from 1875 to 2004. [Available online] .

The dataset we analyze described a set ¢; € ® of entities. Each entity is described for
each considered moment t,, € T of time using multiple attributes, which form the mul-
tidimensional description space D. Therefore, an entry in such a database would be an
observation, a triple (entity, timestamp, description). An observation x; = (¢, tm, xfl) sig-

1. http://www.ipw.unibe.ch/content/team/klaus_armingeon/comparative_political_data_sets
2. http://www.nsd.uib.no/macrodataguide/set.html?7id=56&sub=1
3. http://www.rochester.edu/college/faculty/hgoemans/data.htm


http://www.ipw.unibe.ch/content/team/klaus_armingeon/comparative_political_data_sets
http://www.nsd.uib.no/macrodataguide/set.html?id=56&sub=1
http://www.rochester.edu/college/faculty/hgoemans/data.htm
http://www.ipw.unibe.ch/content/team/klaus_armingeon/comparative_political_data_sets
http://www.nsd.uib.no/macrodataguide/set.html?id=56&sub=1
http://www.rochester.edu/college/faculty/hgoemans/data.htm
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Figure 3.2 — Desired output: (a) the evolution phases and the entity trajectories, (b) the
observations of 3 entities contiguously partitioned into 5 clusters.

nifies that the entity ¢; is described by the vector xf at the moment of time ¢,,. We denote
by 2

y T,
associated with the observation x;. Each observation belongs to a single entity and, conse-

quently, each entity is associated with multiple observations, for different moments of time.

the entity to which the observation z; is associated. Similarly, z} is the timestamp

Formally:

Vz; € D: 3¢y € @ so that 2¥ = ¢
V(r,tm) € 2 x T : Ny = (x?,xﬁ,xf) so that Jrf’ = ¢y and z} = t,,

For example, the database that studies the evolution of democratic states [Armingeon
et al. 2011] stores, for each country and each year, the value of multiple economical, so-
cial, political and financial indicators. The countries are the entities, and the years are the
timestamps.

Starting from such a database, one of the interests of Political Studies researchers is
to detect typical evolution patterns. There is a double interest: a) obtaining a broader un-
derstanding of the phases that the entity collection went through over time (e.g. detecting
the periods of global political instability, of economic crisis, of wealthiness etc.); b) con-
structing the trajectory of an entity through the different phases (e.g. a country may have
gone through a period of military dictatorship, followed by a period of wealthy democracy).
The criteria describing each phase are not known beforehand (which indicators announce a
world economic crisis?) and may differ from one phase to another.

We address these issues by proposing a novel temporal-driven constrained clustering
algorithm. The proposed algorithm partitions the observations into clusters p; € M, that
are coherent both in the multidimensional description space and in the temporal space.
We consider that the obtained clusters can be used to represent the typical phases of the
evolution of the entities through time. Figure 3.2 shows the desired result of our clustering
algorithm. Each of the three depicted entities (¢1, @2 and ¢3) is described at 10 moments of
time (t,,,m = 1,2, ...,10). The 30 observations of the dataset are partitioned into 5 clusters
(15,5 =1,2,...,5). In Figure 3.2a we observe how clusters y; are organized in time. Each of
the clusters has a limited extent in time, and the time extents of clusters can overlap. The
temporal extent of a cluster is the minimal interval of time that contains all the timestamps
of the observations in that cluster. The entities navigate through clusters. When an observa-
tion belonging to an entity is assigned to cluster o and the anterior observation of the same
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entity is assigned in cluster p1, then we consider that the entity has a transition from phase
w1 to phase po. Figure 3.2b shows how the series of observations belonging to each entity
are assigned to clusters, thus forming continuous segments. This succession of segments is
interpreted as the succession of phases through which the entity passes. For this succession
to be meaningful, each entity should be assigned to a rather limited number of continuous
segments. Passing through too many phases reduces the comprehension. Similarly, evolu-
tions which are alternations between two phases (e.g., p1 — po — p1 —> pe2) hinder
the comprehension. Figure 3.3 shows an example of such an alternating evolution (the bad
segmentation) and a more comprehensible evolution where there is only one alternation (the
good segmentation).

" bad B
‘ segmentation

" good { .|
| segmentation ,‘

Figure 3.3 — Examples of a good and a bad segmentation into phases.

Based on these observations, we assume that the resulting partition must:

— regroup observations having similar descriptions into the same cluster (just
as traditional clustering does). The clusters represent a certain type of evolution;

— create temporally coherent clusters, with limited extent in time. In order
for a cluster to be meaningful, it should regroup observations which are temporally
close (be contiguous on the temporal dimension). If there are two different periods
with similar evolutions (e.g. two economical crises), it is preferable to have them
regrouped separately, as they represent two distinct phases. Furthermore, while it is
acceptable that some evolutions exist during the entire period, usually the resulted
clusters should have a limited temporal extent;

— segment, as contiguously as possible, the series of observations for each
entity. The sequence of segments will be interpreted as the sequence of phases through
which the entity passes.

In order to construct such a partition, we propose a new time-aware dissimilarity measure
that takes into account the temporal dimension. Observations that are close in the descrip-
tion space, but distant in time are considered as dissimilar. We also propose a method to
enforce the segmentation contiguity, by introducing a penalty term based on the Normal Dis-
tribution Function. We combine the two propositions into a novel time-driven constrained
clustering algorithm, TDCK-Means, which creates a partition of coherent clusters, both
in the multidimensional space and in the temporal space. This algorithm uses soft semi-
supervised constraints to encourage adjacent observations belonging to the same entity to
be assigned to the same cluster. The proposed algorithm constructs the clusters that serve
as evolution phases and segments the observations series for each entity. At the moment,
our algorithm does not output the graph structure represented in Figure 3.2a. A promising
venue for organizing the clusters as a graph, and not just as a post-processing based on the
clustering results obtained using TDCK-Means, is going to be addressed in Section 3.7 and,
more thoroughly, in Chapter 8.
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3.3 Related work

The semi-supervised techniques seen in Section 2.2 are not limited to introducing expert
knowledge into the clustering process. They can be used to inject any type of information
external to the dataset. Previous works which model temporal information using semi-
supervised tools already exist. The literature presents some examples of algorithms used
to segment a series of observations into continuous chunks. In [Lin & Hauptmann 2006],
the daily tasks of a user are detected by segmenting scenes from the recordings of his
activities. Semi-supervised must-link constraints are set between all pairs of observations,
and a fixed penalty is inflicted when the following conditions are fulfilled simultaneously:
the observations are not assigned to the same cluster and the time difference between their
timestamps is less than a certain threshold. A similar technique is used in [De la Torre &
Agell 2007|, where constraints are used to penalize non-smooth changes (over time) on the
assigned clusters. This segmenting technique is used to detect tasks performed during a
day, based on video, on sound and on GPS information. In [Sanders & Sukthankar 2001],
the objects appearing in an image sequence are detected by using a hierarchical descending
clustering, that regroups pixels into large temporally coherent clusters. This method seeks to
maximize the cluster size, while guaranteeing intra-cluster temporal consistency. All of these
techniques consider only one series of observations (a single entity) and must be adapted
for the case of multiple series. The main problem of a threshold based penalty function
is to set the value of the threshold, which is usually data-dependent. Optimal matching
is used in [Widmer & Ritschard 2009| to discover trajectory models, while studying the
de-standardization of typical life courses.

The temporal dimension of the data is also used in some other fields of Information Re-
trieval. In |Talukdar et al. 2012], constrained clustering is used to scope temporal relational
facts in the knowledge bases, by exploiting temporal containment, alignment, succession,
and mutual exclusion constraints among facts. In [Chen et al. 2009], clustering is used to
segment temporal observations into continuous chunks, as a preprocessing phase. A graph-
ical model is proposed in [Qamra et al. 2006], that uses a probabilistic model in which
the timestamp is part of the observed variables, and the story is the hidden variable to be
inferred. But still, none of these approaches seek to create temporally coherent partitions
of the data, mainly using the temporal dimension as a secondary information.

In the following sections, we propose a dissimilarity measure, a penalty function and a
clustering algorithm in which the temporal dimension has a central role, and which address
the limitations existing in the above presented work.

3.4 Temporal-Driven Constrained Clustering

The observations z; € X that need to be structured can be written as triples
(entity, time, description): x; = (xf),x,f,xfl) x¢ € D is the vector in the multidimensional
description space which describes the entity xf) € ® at the moment of time z! € T.

Traditional clustering algorithms input a set of multidimensional vectors, which they re-
group in such a way that observations inside a group resemble each other as much as possible,
and resemble observations in other groups as little as possible. K-Means [MacQueen 1967] is

a clustering algorithm based on iterative relocation, that partitions a dataset into k clusters,
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locally minimizing the sum of distances between each data points x; and its assigned cluster
centroids p; € M. At each iteration, the objective function

I = ZquMEIiechm? - M?HZ

is minimized until it reaches a local optimum.

Such a system is appropriate for constructing partitions based solely on xgl, the descrip-
tion in the multidimensional space. It does not take into account the temporal order of the
observations, nor the structure of the dataset, the fact that observations belong to entities.
We extend to the temporal case by adding to the centroids a temporal dimension ,uz-, de-
scribed in the same temporal space 7 as the observations. Just like its multidimensional
description vector ,u?, the temporal component does not necessary need to exist in the tem-
poral set of the observation. It is an abstraction of the temporal information in the group,
serving as a cluster timestamp. Therefore, a centroid p; will be the couple (ué, u;l).

We propose to adapt the K-Means algorithm to the temporal case by adapting the
Euclidean distance, normally used to measure the distance between an element and its cen-
troid. This novel temporal-aware dissimilarity measure takes into account both the distance
in the multidimensional space and in the temporal space. In order to ensure the temporal
contiguity of observations for the entities, we add a penalty whenever two observations that
belong to the same entity are assigned to different clusters. The penalty depends on the time
difference between the two: the lower the difference, the higher the penalty. We integrate
both into the Temporal-Driven Constrained K-Means (TDCK-Means), which is a
temporal extension of K-Means. TDCK-Means searches to minimize the following objective
function:

T=3 3 |- millza+ Y wlanw) (3.1)
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where || ® ||74 is our temporal-aware (TA) dissimilarity measure (detailed in the next sec-
tion), w(z;, z;) is the cost function that determines the penalty of clustering adjacent obser-
vations of the same entity into different clusters, and C; is the set of observations in cluster

7

3.4.1 The temporal-aware dissimilarity measure

The proposed temporal-aware dissimilarity measure ||z; — «;||74 combines the Eu-
clidean distance in the multidimensional space D and the distance between the timestamps.
We propose to use the following formula:

o — P ot — 4|
Wrwﬂmzl—o— vl I iy von (3.2)

max max

where || @ || is the classical L? norm and Az,,q, and At are the diameters of D, and T
respectively (the largest distance encountered between two observations in the multidimen-
sional description space and, respectively, in the temporal space). The following properties
are immediate:
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Figure 3.4 — Color map of the temporal-aware dissimilarity measure as a function of the
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close to the minimum and the red color represents the maximum. The dissimilarity measure
is zero if and only if the two observations have equal timestamps and equal multidimensional
description vectors. Still, it suffices for only one of the components (temporal, multidimen-
sional) to attend the maximum value for the measure to reach its maximum. The measure
behaves similar to a MAX operator, always choosing a value closer to the maximum of the
two components. The formula for the temporal-aware dissimilarity measure was chosen so
that any algorithm that seeks to minimize an objective function based on the this measure,
will need to minimize both its components. This makes it suitable for algorithms that search
to minimize both the multidimensional and the temporal variance in clusters.

Both components that intervene in the measure follow a function like 1 — 2,¢ € [0, 1].
This function provides a good compromise: it is tolerant for small values of € (small time
difference, small multidimensional distance), but decreases rapidly when £ augments. The
temporal-aware dissimilarity measure is an extension of the Euclidean function. If the times-
tamps are unknown and set to be all equal, the temporal component is canceled and the
temporal-aware dissimilarity measure becomes a normalized Fuclidean distance. In Sec-
tion 3.5.4, we evaluate the behavior of the proposed dissimilarity function. We will call
Temporal-Driven K-Means the algorithm that is based on the K-Means’ iterative struc-
ture and uses the temporal-aware dissimilarity measure to asses similarity between ob-
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Figure 3.5 — Penalty function vs. time difference for multiple 6. (8 = 1)

servations. Notice that Temporal-Driven K-Means, relative to TDCK-Means, has no
contiguous segmentation penalty function (the contiguous segmentation penalty function is
detailed in the next section).

3.4.2 The contiguity penalty function

The penalty function encourages temporally adjacent observations of the same entity to
be assigned to the same cluster. We use the notion of soft pair-wise constraints from semi-
supervised clustering. A “must-link” soft constraint is added between all pairs of observations
belonging to the same entity. The clustering is allowed to break the constraints, while
inflicting a penalty for each of these violations. The penalty is more severe if the observations
are closer in time. The function is defined as:

_l(nxﬁ—xﬁnf

w(zi, ;) =Bxe * ° 1 [:n? = xf] (3.3)
where [ is a scaling factor and, at the same time, the maximum value taken by the penalty
function; § is a parameter which controls the width of the function. 5 is dataset dependent
and can be set as a percentage of the average distance between observations. 1 [statement]
is a function that returns 1 if statement is true and 0 otherwise.

The function resembles to the positive side of the Normal Distribution function, centered
in zero. The function has a particular shape, as represented in Figure 3.5. For small time
differences, it descends very slowly, thus inflicting a high penalty for breaking a constraint.
As the time difference increases, the penalty decreases rapidly, converging towards zero.
When ¢ is small, the functions value descends very quickly with the time difference. The
function produces penalties only if the constraint is broken for adjacent observation. For
high values of 9, breaking constraints for distant observations cause high penalties, therefore
creating segmentations with large segments. Figure 3.5 shows the evolution of the penalty
function with the time difference between two observations, for multiple values of § and for

B=1.
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An advantage of the proposed function is that it requires no time discretization or setting
a fixed window width, as proposed in [Lin & Hauptmann 2006]. The ¢ parameter permits the
fine tuning of the penalty function. In Section 3.5.4, we evaluate Constrained K-Means,
which is an extension of K-Means, to which we add the proposed contiguity penalty function
(but which does not take into account the temporal dimension when measuring the distance
between observations). The influence of both 5 and § will be studied in Section 3.5.5.

3.4.3 The TDCK-Means algorithm

The time dependent distance ||z; — p||74 encourages the decrease of both the temporal
and multidimensional variance of clusters; meanwhile the penalty function w(x;,x;) favors
the adjacent observations belonging to the same entity to be assigned to the same cluster.
The rest of the TDCK-Means algorithm is similar to the K-Means algorithm. It seeks to
minimize J by iterating an assignment phase and a centroid update phase until the partition
does not change between two iterations. The outline of the algorithm is given in Algorithm 1.

The choose random function chooses randomly, for each centroid p;, an observation
x; and sets p; = (:vf, :c;i) Furthermore, in the initialization phase we perform a K-Means
iteration in order to calculate an initial affectation of observations to clusters. For each

individual the best initial cluster function solves the following equation:

best initial cluster(i) = jazrlg;mvz (sz _ 'uyterfl) H%A) (3.4)
therefore affecting each observation to the closest centroid, in terms of temporal-aware
dissimilarity measure. In the assignment phase, for every observation z;, the best _cluster
function chooses a cluster C; so that the temporal-aware dissimilarity measure from z; to
the cluster’s centroid pj;, added to the cost of penalties possibly incurred by this cluster
assignment, is minimized. This function is similar to the best initial cluster function
in Equation 3.4, to which the penalty term is added. It resumes to solving the following
equation:

o0
best cluster(i) = argmin | ||z; — ,ugner_l) %4 + Z w(z;, rg) (3.5)

j=1,2,....k —
xk€C§zter 1)

This guaranties that the contribution of x; to the value of J diminishes or stays constant.
Overall, this assures that J diminishes in the assignment phase (or stays constant). It is
noteworthy that, in Equation 3.5, the affectation of an observation in the current iteration
is dependent on the affectation of the other observations in the previous iteration. This is
also the reason why an extra K-Means iteration was necessary in the initialization of the
algorithm and why the best initial cluster function was defined.

In the centroid update phase, the update centroid function recalculates the cluster
centroids using the observations in X and the assignment at the previous iteration. Therefore
the contribution of each cluster to the J function is minimized. Each of the temporal and
the multidimensional components is calculated individually. In order to find the values that
minimize the objective function, we need to solve the equations:

0 _ . 0T _

—~ =0; === =0 3.6
o o (36)
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Algorithm 1 Outline of the TDCK-Means algorithm.
Input: z; € X - observations to cluster;
Input: £ - number of requested clusters;
Output: C;,j = 1,2,....k - k clusters;
Output: pj,j =1,2,...,k - centroids for each cluster;
for j=1,2,..,k do
pj < choose random(X)
CY 0
for z; € X do
C? = C? U ;| where j = best_initial cluster(X, M")
iter <0
M) ) //set of centroids
Ppliter) ) //set of clusters
repeat
wter < iter +1
for j=1,2,...,k do
Cj(zter) )
// assignment phase
for r; € X do
CJ(-MT) = CJ(-iter) U ;| where j = best _cluster(X, M(iter—1) pliter—1))
// centroids update phase
for j=1,2,...,k do
(Mf’(lt”), u;’(mr)) < update centroid(j, X, Miter=1) “pliter—1))
M) o (D=1 2 kY
Plter)  {cS)j = 1,2, .. k)

until € = ¢ vj € [1,K]

By replacing equations (3.2) and (3.3) in (3.1), we obtain the following formula for the
objective function:

k d d||2 t t]|12
||2f — w5l [ls — 5l
j:’X—ZZKl—MzJ - =Xz

j=1z,€C; max mazx
_l(nmﬁ—m;H)Q
+Z 25*62 ? ]l{x?:xf] (3.7)
T EX IkQCj
We exemplify the calculation for the update formula of ,ué.
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Therefore, from equations (3.6) and (3.7), we obtain the centroid update formulas:
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(3.8)

Just like the centroid update phase in K-Means, the new centroids in TDCK-Means are
also averages over the observations. Unlike K-Means, the averages are weighted for each
component, using the distance from the other. For example, each observation contributes
to the multidimensional description of the new centroid, proportional with its temporal
centrality in the cluster. Observations that are more distant in time (from the centroid)
contribute less to the multidimensional description than the ones being closer in time. A
similar logic applies to the temporal component. The consequence is that the new clusters
are coherent both in the multidimensional space and in the temporal one.

Algorithm’s complexity Equation (3.7) shows that TDCK-Means’ complexity is
O(n?k), due to the penalty term. Still, the equation can be rewritten, so that only ob-
servations belonging to the same entity are tested. If p is the number of entities and ¢ is the
maximum number of observations associated with each entity, then n = p x ¢. The com-
plexity of TDCK-Means is O(pg®k), which is well adapted to Social Science and Humanities
datasets, where often a large number of individuals is studied over a relatively short period
of time (p > q).

3.4.4 Fine-tuning the ratio between components

The temporal-aware dissimilarity measure, as presented in equation (3.2), gives equal im-
portance to both the multidimensional component and the temporal component. This might
pose problems when the data are not uniformly distributed both in the multidimensional
descriptive space and in the temporal space. If the medium standard deviation reported to
the medium distance between pairs of observations is greater in one space than in the other,
giving equal weight to the components can lead to important bias in the clustering process.
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Figure 3.6 — Multidimensional component, temporal component and temporal-aware dis-
similarity measure function of «

E.g. observations that are very uniformly distributed in the temporal space (same number
of observations for each timestamp) and, at the same time, rather compactly distributed
in the description space. In this case, in average, the temporal component weight more in
the dissimilarity measure than the multidimensional component. Consequently, the cluster-
ing is biased towards the temporal cohesion of clusters. Similarly, in some applications, it
is desirable to privilege one component over the other. F.g. on a large enough scale, user
roles in social networks have a temporal component (new types of roles might appear over
the years). But in a limited time span, it is perfectly acceptable that the roles can coexist
simultaneously. Therefore, the temporal component should have only a mild impact on the
overall measure.

We adjust the ratio between the two components by using two tuning factors v4 and ~;.
~vq weights the multidimensional component of the temporal-aware dissimilarity measure,
whereas 7; weights the temporal component. Equation (3.2) can be rewritten as:

[l — =] [lf — 51
|lzi — @5llra =1 - 1—’YdT 1—%T (3.9)

max max

When the tuning factor for a certain component is set at zero, the respective component
does not contribute to the temporal-aware measure. When the tuning factor is set to one,
no penalty is inflicted to the contribution of the respective component to the measure. It
is immediate that equation (3.2) is a special case of equation (3.9), with 7y =1 and 3, =1
(no weights).

Setting the weights 4 and v 4 and +; are not independent one from another, their
values are set using a unique parameter o.

)1+ ifa<0 )L ifa<0 (3.10)
T ifa>0 " lca ifa>0 '
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Figure 3.7 — Color map of the temporal-aware dissimilarity measure for « = —1 (a), o =
—0.5 (b), «a=0.5(c)and a =1 (d) .

« acts as a slider, taking values from —1 to 1. Figure 3.6 shows the evolution v4 and 4
with «. Also, Figure 3.7 shows the color map of the temporal-aware dissimilarity measure
for multiple values of a.

When o = —1, then 74 = 0 and 4 = 1. The multidimensional component is eliminated

and only the time difference between the two observations is considered. The temporal-aware
. . . ||} —%]? .

measure becomes a normalized time difference (||z; — z;|[74 = —x;z-—). The color map in

Figure 3.7a (v = —1) shows that the values of the dissimilarity measure is independent of
the multidimensional component.

As the value of « increases, the weight of the descriptive component increases also. In
Figure 3.7b (o = —0.5), the multidimensional component has a limited impact on the overall
measure. When o = 0, then 7 = 1 and ~ = 1, both components have equal importance, as
proposed initially in equation (3.2). In Figure 3.7¢ (o = 0.5), the color map shows that the
multidimensional component has a larger impact then the temporal component. Large values
of the temporal component have only moderate influence over the measure. When o = 1
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(color map in Figure 3.7d), then 4 = 1 and 4 = 0, the temporal dimension is eliminated
||z~
A, )
Since the temporal-aware dissimilarity measure is used into the objective function in
equation (3.7), the latter changes accordingly to integrate the tuning factors. v4 and 7,

behave as constants in the derivation formulas in equation (3.6). As a result, the centroid

and the measure becomes a normalized Euclidean distance (||z; — ;|74 =

update formulas in equation (3.8) are rewritten as:
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The tuning between the multidimensional and temporal component in the temporal-aware
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dissimilarity measure propagates into the centroid update formula of TDCK-Means. We
study, in Section 3.5.6, the influence of the tuning parameter and we propose an heuristic
to set its value.

3.5 Experiments

3.5.1 Dataset

Experimentations with Time-Driven Constrained K-Means are performed on a dataset
issued from political sciences: Comparative Political Data Set I [Armingeon et al. 2011].
It is a collection of political and institutional data, which consists of annual data for 23
democratic countries for the period from 1960 to 2009. The dataset contains 207 political,
demographic, social and economic variables.

The dataset was cleaned by removing redundant variables (e.g. country identifier and
postal code) and the corpus was preprocessed by removing entity bias from the data. For
example, it is difficult to compare, on the raw data, the evolution of population between
populous country and one with fewer inhabitants, since any evolution in the 50 years times-
pan of the dataset will be rendered meaningless by the initial difference. Inspired from
panel data econometrics [Dormont 1989|, we remove the entity-specific, time-invariant ef-
fects, since we assume them to be fixed over time. We subtract from each value the average
over each attribute and over each entity. We retain the time-variant component, which is
in turn normalized, in order to avoid giving too much importance to certain variables. The
obtained dataset is under the form of triples (country, year, description).

3.5.2 Qualitative evaluation

When studying the evolution of countries over the years, it is quite obvious for the
human reader why the evolutions of the eastern European countries resemble each other for
most of the second half of the twentieth century. The reader would create a group entitled
“Communism”; extending from right after the Second World War until roughly 1990, for
defining the typical evolution of communist countries. One would expect that, based on a
political dataset, the algorithms would succeed in identifying such typical evolutions and
segment the time series of each of these countries accordingly. Figure 3.8 shows the typical
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Figure 3.8 — Typical evolution patterns constructed by TDCK-Means on Comparative Po-
litical Data Set I with 8 clusters. The distribution over time of observations in each cluster
(a), how many entities belong in a certain clusters for each year (b) and the segmentation

of entities over clusters (c).

evolution patterns constructed by TDCK-Means (with g = 0.003 and 6 = 3, obtained as
shows in Section 3.5.5), when asked for 8 clusters. The distribution over time of observations
in each cluster is given in Figure 3.8a. All constructed clusters are fairly compact in time
and have limited temporal extents. They can be divided into two temporal groups. In the
first one, clusters p; to s consistently overlap. Same for clusters pg to ug, in the second
group. This indicates that the evolution of each country passes by at least one cluster from
each group. The turning point between the two groups is around 1990. Figure 3.8b shows
how many countries belong in a certain cluster for each year. Clusters us and pg contain
most of the observations, suggesting the general typical evolution.

The meaning of each constructed cluster starts to unravel only when studying the seg-
mentation of countries over clusters, in Figure 3.8c. For example, cluster po regroups the
observations belonging to Spain, Portugal and Greece from 1960 up until around 1975.
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Historically, this coincides with the non-democratic regimes in those countries (Franco’s
dictatorship in Spain, the “Regime of the Colonels” in Greece). Likewise, cluster p4 con-
tains observations of countries like Denmark, Finland, Iceland, Norway, Sweden and New
Zealand. This cluster can be interpreted as the “Swedish Social and Economical Model” of
the Nordic countries, to which the algorithm added, interestingly enough, New Zealand. In
the second period, cluster ug regroups observations of Greece, Ireland, Spain, Portugal and
Belgium, the countries which seemed the most fragile in the aftermaths of the economical
crises of 2008.

3.5.3 Evaluation measures

Since the dataset contains no labels to report to as ground truth, we use the classical
Information Theory measures in order to numerically evaluate the proposed algorithms. We
evaluate separately each of the three goals that we propose in Section 3.2.

Create clusters that are coherent in the multidimensional description space. It
is desirable that observations that have similar multidimensional descriptions to be par-
titioned under the same cluster. The similarity in the description space is measured by
the multidimensional component of the temporal-aware dissimilarity measure. This goal is
pursued by all classical clustering algorithms (like K-Means) and any traditional clustering
evaluation measure [Halkidi et al. 2001] can be used to asses it. We choose the mean cluster
variance, which is traditionally used in clustering to quantify the dispersion of observations
in clusters. The MDvar measure is defined as:

k
1
M Dvar = 4] X Z Z ||zd — ,u?Hz
7j=1 LL‘iGCj

Create temporally coherent clusters, with limited extend in time. This goal is
very similar to the previous one, translated in the temporal space. It is desirable that obser-
vations that are assigned to the same cluster to be similar in the temporal space (i.e. to be
close in time). The similarity in the temporal space is measured by the temporal component
in the temporal-aware dissimilarity measure. The limited time extent of a centroid implies
small temporal distances between observations timestamp and the centroid timestamp. As
a result, the variance can also be used to measure the dispersion of clusters in the temporal
space. Similarly to MDwvar, the Tvar measure is defined as:

k
1
Twar = m X Z Z ||} —M§'||2

7j=1 Z‘iECj

Segment the temporal series of observations of each entity into a relatively small
number of contiguous segments. The goal is to have successive observations belonging
to an entity grouped together, rather that scattered in different clusters. The Shannon
entropy can quantify the number of clusters which regroup the observations of an entity, but
it is insensible to alternations between two classes (evolutions like p11 — po — p1 — p2).
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Figure 3.9 — Examples of a good and a bad segmentation in contiguous chunks and their
related ShaP score.

We evaluate using an adapted mean Shannon entropy of clusters over entities, which weights
the entropy by a penalty factor depending on the number of continuous segments in the
series of each entity. The ShaP measure is calculated as:

Shap = Xzz( (1) x logs(p (Mj))X<1+m>>

T, €X j=1

where n.p, is the number of changes in the cluster assignment series of an entity, 1, is the
minimal required number of changes and n.ps is the number of observations for an entity.
For example, in Figure 3.9, if the series of 11 observations of an entity is as&igned to two
clusters, but it presents 4 changes, the entropy penalty factor will be 1 4 11 = 1.33. The
ShaP score for this segmentation will be 1.23, compared to a score of 0.94 of the “ideal”
segmentation (only two contiguous chunks).

The “ideal” values for MDvar, Tvar and ShaP is zero and, in all of the experiments
presented in the following sections, we search to minimize the values of the three measures.

3.5.4 Quantitative evaluation

For each combination of algorithms and parameters, we execute 10 times and compute
only the average and the standard deviation. We vary k, the number of clusters, from 2 to
36. The performances of five algorithms are compared from a quantitative point of view:

— Simple K-Means - clusters the observations based solely on their resemblance in

the multidimensional space;

— Temporal-Driven K-Means - optimizes only the temporal and multidimen-
sional components, without any contiguity constraints; combines K-Means with the
temporal-aware dissimilarity measure defined in Section 3.4.1. Parameters: a = 0 («
defined in Equation 3.8) and 8 = 0 (8 defined in Equation 3.3);

— Constrained K-Means - uses only the multidimensional space (and not the tempo-
ral component) together with the penalty component, as proposed in Section 3.4.2.
Parameters: « = 1, § = 0.003 and 6 = 3 (¢ defined in Equation 3.3);

— TDCK-Means - the Temporal-Driven Constrained Clustering algorithm proposed
in Section 3.4.3. a =0, 5§ =0.003 and 6 = 3;

— tcK-Means - the temporal constrained clustering algorithm proposed in |[Lin &
Hauptmann 2006]. It uses a threshold penalty function w(z}, x?) = a*1(|zt — a:§| <
d*) when observations x; and x; are not assigned to the same cluster. It was adapted
to the multi-entity case by applying it only to observations belonging to the same
entity. Parameters: o* = 2, d* = 4.
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Figure 3.10 — MDvar (a), Tvar (b) and ShaP (c) values of the considered algorithms when
varying the number of clusters.

The a* parameter in tcK-Means should not be mistaken with the a parameter in
TDCK-Means, as they do not have the same meaning. In tcK-Means, a* controls the
weight of the penalty function, whereas in TDCK-Means « is the fine-tuning parameter.

Obtained results. All the parameters are determined as shown in Section 3.5.5. Table 3.1
shows the average values for the indicators, as well as the average standard deviation (in
italic) obtained by each algorithm over all values of k. The average standard deviation is
only used to give an idea of the order of magnitude of the stability of each algorithm.
Since Simple K-Means, Temporal-Driven K-Means and Constrained K-Means are designed
to optimize mainly one component, it is not surprising that they show the best scores for,
respectively, the multidimensional variance, the temporal variance and the entropy (best
results in boldface). TDCK-Means seeks to provide a compromise, obtaining in two out of
three cases the second best score. It is noteworthy that the proposed temporal-aware dissim-
ilarity measure used in Temporal-Driven K-Means provides the highest stability (the lowest
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Table 3.1 — Mean values for indicators and standard deviations

Algorithm MDvar Tvar ShaP
» Simple K-Means 120.59 2.97 | 48.01 887 | 2.15 0.23
& Temp-Driven K-Means 12298 2.85 | 19.97 5.39 | 2.58 0.18
§ Constrained K-Means 132.69 8.07 | 103.15 42.98 | 1.24 0.5
TDCK-Means 127.81 5.96 27.54 5.81 | 2.06 0.2
tcK-Means 123,04 3.8 62.44 24.16 | 1.79 0.32
&  Temp-Driven K-Means -1.99% 58.40% -19.63%
8  Constrained K-Means -10.04% -114.84% 42.21%
= TDCK-Means -5.99% 42.64% 4.19%
tcK-Means -2.03% -30.05% 16.99%

average standard deviation) for all indicators. Meanwhile, the constrained algorithms (Con-
strained K-Means and tcK-Means) show high instability, especially on Twar. TDCK-Means
shows a very good stability. The second part of Table 3.1 gives the relative gain of per-
formance of each of the proposed algorithms over Simple K-Means. It is noteworthy the
effectiveness of the temporal-aware dissimilarity measure proposed in Section 3.4.1, with a
58% gain of Temporal Variance and less than 2% loss of multidimensional variance. The pro-
posed dissimilarity measure greatly enhances the temporal cohesion of the resulted clusters,
without a significant scattering of observations in the multidimensional space. Similarly,
the Constrained KM shows an improvement in the contiguity measure ShaP of 42%, while
losing 10% multidimensional variance. By comparison, tcK-Means shows modest results,
improving ShaP by only 17% and still showing important losses on both Twar (-30%) and
MDwvar (-2%). This proves that the threshold penalty function proposed in literature has
lower performances than our newly proposed contiguity penalty function. TDCK-Means
combines the advantages of the other two algorithms, providing an important gain of 43%
of temporal variance and increasing the ShaP measure by more than 4%. Nonetheless, it
shows a 6% loss of MDuvar.

Varying the number of clusters Similar conclusions can be drawn when varying the
number of clusters. MDvar (Figure 3.10a) decreases, for all algorithms, as the number of
cluster increases. It is well known in clustering literature that the intra-cluster variance
decreases steadily with the increase of number of clusters. As the number of clusters aug-
ments, so does the differences of TDCK-Means and Constrained K-Means, when compared
to the Simple K-Means algorithm. This is due to the fact that the constraints do not let
too many clusters to be assigned to the same entity, resulting in the convergence towards a
local optimum, with a higher value of MDvar. An opposite behavior is shown by the ShaP
measure in Figure 3.10c, which increases with the number of clusters. It is interesting to
observe how the MDvar and the ShaP measures have almost opposite behaviors. An algo-
rithm that shows the best performances on one of the measures, also shows the worst on
the other. The temporal divergence in Figure 3.10b shows a very sharp decrease for a low
number of clusters, and afterwards remains relatively constant.
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3.5.5 Impact of parameters 5 and ¢

The  parameter controls the impact of the contiguity constraints in equation (3.3).
When set to zero, no constraints are imposed, and the algorithm behaves just like the
Simple K-Means. The higher the values of 3, the higher the penalty inflicted when breaking
a constraint. When g is set to large values, the penalty factor will take precedence over the
similarity measure in the objective function. Observations that belong to a certain entity
will be assigned to the same cluster, regardless of their resemblance in the description
space. When this happens, the algorithm cannot create partitions with higher number of
clusters than the number of entities. In order to evaluate the influence of parameter 3, we
execute the Constrained K-Means algorithm with 8 varying from 0 to 0.017 with a step
of 0.0005. The value of § is set at 3, and 5 clusters are constructed. For each value of 5,
we executed 10 times the algorithm and we plot the average obtained values. Figure 3.11a
shows the evolution of measures MDvar and ShaP with 5. When 8 = 0 both MDvar and
ShaP have the same values as for Simple K-Means. As [ increases, so does the penalty
for non-contiguous segmentation of entities. MDvar starts to increase rapidly, while ShaP
decreases rapidly. Once S reaches higher values, the measures continue their evolution, but
with a leaner slope. In the extreme case, in which all observations are assigned to the same
cluster regardless of their similarity, the ShaP measure will reach zero.

The 0 parameter controls the width of the penalty function in equation (3.3). As Fig-
ure 3.5 shows, when § has a low value, a penalty is inflicted only if the time difference of a
pair of observations is small. As the time difference increases, the function quickly converges
to zero. As ¢ increases, the function decreases with a leaner slope, thus also taking into ac-
count observations which are farther away in time. In order to analyze the behavior of the
penalty function when varying §, we have executed the Constrained K-Means, with § rang-
ing from 0.1 to 8, using a step of 0.1. 5 was set at 0.003 and 10 clusters were constructed.
Figure 3.11b plots the evolution of measures MDuvar and ShaP with §. The contiguity mea-
sure ShaP decreases almost linearly as d increases, as the series of observations belonging to
each entity gets segmented in larger chunks. At the same time, the multidimensional vari-
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Figure 3.12 — Influence of tuning parameter a on MDvar and Tvar (a) and Tvar and ShaP

(b)

ance MDvar increases linearly with ¢. Clusters become more heterogeneous and variance
increases, as observations get assigned to clusters based on their membership to an entity,
rather than their descriptive similarities.

Varying o* and d* for the tcK-Means proposed in [Lin & Hauptmann 2006] yields similar
results, with the MDvar augmenting and the ShaP descending, when o* and d* increase. For
the tcK-Means, these evolutions are linear, whereas for the Constrained K-Means they are
exponential, following a trend line of function e Plotting the evolution of the MDuvar
and the ShaP indicators on the same graphic, provides a heuristic for choosing the optimum
values for the (8, d) parameters of the Constrained K-Means and the TDCK-Means, respec-
tively the (a*,d*) parameters of the tcK-Means. Both curves are plotted with the vertical
axis scaled to the interval [ming,qiye, Mayqrue]. Their point of intersection determines the
values of the parameters (as shown in Figure 3.11a and 3.11b). The disadvantage of such
a heuristic would be that a large number of executions must be performed with multiple
values for the parameters before the “optimum” can be found.

3.5.6 The tuning parameter «

The parameter «, proposed in Section 3.4.4, allows the fine tuning of the ratio be-
tween the multidimensional component and the temporal component in the temporal-aware
dissimilarity measure. When « is close to -1, the temporal component is predominant. Con-
versely, when « is close to 1, the multidimensional component takes precedence. The two
components have equal weights when o = 0. To evaluate the influence of parameter a;, we
executed Temporal-Driven K-Means with « varying from -1 to 1 with a step of 0.1. In order
not to bias the results and to evaluate only the impact of the tuning parameter, we remove
the contiguity constraints from the objective function J, by setting 8 = 0. For each value
of a, we executed 10 times and we present the average values.

Figure 3.12a shows the evolution of measures MDvar and Tvar with «. For low values
of o, the value of the temporal-aware dissimilarity measure is given mainly by the temporal
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component, so Tvar shows its lowest value, while MDwvar presents its maximum. As «
increases, MDvar decreases as more importance is given to the multidimensional component.
For a € (—1,0], the importance of the temporal component remains intact, the increase of
Twar is solely the result of the algorithm converging to a local optimum which also takes into
account the multidimensional component. For a € [0, 1), the impact of the multidimensional
component stays constant, whereas the importance of the temporal components diminishes.
As a result, MDvar continues its decrease and Twar increases sharply. For a« = 1 the
temporal component is basically ignored from the measure. The Temporal-Driven K-Means
behaves just like Simple K-Means. Figure 3.12b shows the evolution of ShaP alongside
MDwvar. Even if the contiguity penalty component was neutralized by setting 5 = 0, the
value of ShaP is not constant, but it descends with «. For low values of «, the temporal
component is predominant in the similarity measure. This generates partitions where every
cluster regroups all observations from a specific period, regardless of their multidimensional
description. This means that all entities have segments in all the clusters, which leads to a
high value of ShaP.

It is noteworthy that the evolution of the indicators is not linear with a.. As « increases,
Tvar augments only very slowly and picks up the pace only for large values of a. This in-
dicates that the temporal component has an inherent advantage over the multidimensional
one. As we presumed in Section 3.4.4, this is due to the intrinsic nature of the dataset and
the main reason why the tuning parameter o was introduced. The distributions of obser-
vations in the multidimensional and temporal spaces is different: in the temporal space,
the observations tend to be evenly distributed, whereas in the multidimensional descrip-
tion space, they cluster together. To quantify this, we calculate the ratio between average
standard deviation and average distances between pairs of observations:

11X stdev ({Haz‘jzm —az‘jﬁmHz xj € X, Z#]})

Tdim = T7
X 1 X , ,
S S e -
25

where dim is replaced with d or ¢ ( the descriptive or the temporal dimension). On Com-
parative Political Data Set I, rg = 29.5% and r; = 65.3%. This shows that observations are
a lot more dispersed in the temporal space than in the multidimensional description space.
This explains why Twar augments very slowly with a and starts to increase more rapidly
only starting from o = 0.4.

Following the heuristic proposed in Section 3.5.5, we can determine a “compromise”
value for a.. As shown in Figure 3.12, all vertical axes are magnified between their functions’
minimum and maximum values. The “compromise” value for « is found at the intersection
point of MDvar and Tvar (and MDvar and Shap). This value is set around 0.7, showing the
dataset’s bias towards the temporal component. This technique for setting the value of the
tunning parameter is just a heuristic, the actual value of a is dependent on the dataset. This
is why we are currently working on a method, inspired from multi-objective optimization
using evolutionary algorithms [Zhang & Li 2007] to automatically determine the values of
a, as well as the other parameters of TDCK-Means (5 and ).
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3.6 Current work: Role identification in social networks

We are at present working on multiple extensions and applications of our work. In
this section, we present the most advanced of them: the application of TDCK-Means to
user social role identification in social networks. This is an ongoing work, the result of
the research collaboration with the Technicolor’s Research € Innovation Laboratories* in
Rennes, France. Technicolor’s research interests include those parts of the Web related to
Cinema and Television, e.g. Web forums, social media, and professional sites. The end
purpose is to enrich the content by linking meta-data, extracted by analyzing the usage
patterns and semantic information. This collaboration allows us to test and further analyze
the behavior of our proposed TDCK-Means algorithm to social network data. This work is
in an advanced state: the submission of an article is already planned.

In the remainder of this section, we present the general context of this application of
TDCK-Means and the used dataset (in Section 3.6.1), followed by the description of the
user role identification framework (in Section 3.6.2) and some preliminary results that we
obtained (in Section 3.6.3).

3.6.1 Context

The base hypothesis of this work is that, when interacting in an online community,
a user plays multiple roles, during the given period of time. These roles are temporally
coherent (when in a role, the user’s activity is uniformly similar) and he/she can change
between roles. We denote these roles as behavioral roles. The global social role is constructed
as a mixture of different behavioral roles, which incorporates the dynamics of behavioral
transitions. Therefore, we define the user social role as a succession of behavioral roles.

We construct the user social roles, based on a social network, inferred from online dis-
cussion forums. The social roles are identified in a three phase framework: (a) behavioral
characteristics are identified, based on the structure of the inferred social network, (b) be-
havioral roles are created using TDCK-Means and (c) the user social roles are determined
based in the transitions between behavioral roles.

Dataset and social network creation In this application of the TDCK-Means, we
used the TWOP [Anokhin et al. 2012] dataset, which is an online forum discussion dataset.
We discuss in more details the forum discussion online environment in Chapter 7, where
we introduce CommentWatcher, an online forum analysis platform. In online forums, users
can start new discussion threads or they reply to other users’ messages, through a quote
citing mechanism. Discussions are formed by multiple users simultaneously answering one
to another. This structure can be used to infer an implicit online social network of users:
two users are considered to have a relation when they reply one to another. This implicit
social network is modeled as an oriented weighted graph. The nodes of the graph are the
users posting in the forums, whereas the arcs signal their relations. A directed arc is added
from user A to user B when A replies to B. The strength of the relation between A and B
is directly proportional with the number of replies of A to B.

4. https://research.technicolor.com/rennes/
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The TWOP dataset is constructed based on the Television Without Pity® forum website.
It contains 58994 post of 7066 authors. It was constructed by parsing messages posted in 6
forums, corresponding to 6 TV series, during the year of 2007.

3.6.2 The framework for identifying social roles

The social roles are identified by passing through behavioral roles. The underlying as-
sumption is that the user’s behavior might change during the observed period of time. For
example, he/she might be very active during a certain period, follow by a period of being
absent from the online community or simply exchanging less with other users. We consider
this temporally coherent periods as being part of the same behavioral role. We, therefore,
define the general social role as a succession of behavioral roles. We determine the social
roles using a three-phase framework:

(a) we calculate the temporal behavioral characteristics, based on the structure of the

inferred social network;

(b) the behavioral roles are extracted using TDCK-Means, by constructing temporally
coherent clusters and contiguously segmenting the temporal measurement vectors as-
sociated to each users;

(c) the user social roles are determined based on the transitions between the behavioral
roles.

In the next paragraphs of this section, we detail each of these phases.

Determining behavioral characteristics The users interactions are quantified in
phase (a) as shown in [Anokhin et al. 2012, by analyzing the directed graph of user interac-
tions. We use measures adapted from the citation analysis literature to provide a measure
of interaction and importance to our forum users. In particular, two well-known citation
metrics are adapted: the h-index [Hirsch 2005] and its successor, the g-index [Egghe 2006].
The following characteristics are computed and used to describe the activity of a user:
— the node’s in/out g-Index. Based on the g-index, it measures how active is the neigh-
borhood of the node.
— catalitic power. This indicator can differentiate between people who constantly receive
replies and those who start just one or two debates.
— weighted in/out-degree. It measures the “quantity” of communication in the neighbor-
hood of the node.
— activity is the number of posts of the user.
— cross-thread entropy measures the user’s focus on a thread.
These measures are rendered temporal by calculating them on an adaptive-length time
window, which ensures that periods with low activity do not bias the temporal clustering
(i.e., in the summer there is no broadcast of TV series and, consequently, there is almost
no activity on the chosen television forum site in the summer).

Creating user behavioral roles In phase (b), the proposed temporal-aware constrained
clustering algorithm (TDCK-Means) is used to detect the behavioral roles. In Section 3.4,

5. http://www.televisionwithoutpity.com/
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the clustered observations are triples (entity,time, description). In the case of user role
detection application, the entities are the users and the description vector is defined in the
multi-dimensional description space, in which each behavioral measure is a dimension. As
already discussed in Section 3.4.4, the importance of the temporal component is dependent
on the application. There is a difference between the application of TDCK-Means to the
detection of country evolutions and the construction of behavioral roles. Evolution phases
of countries are inherently temporal, while the behavioral roles can appear during the entire
observed period. Consequently, we reduce the importance of the temporal component by
setting the o parameter (see Section 3.5.6) to values close to 1. The result of executing
TDCK-Means are k temporal coherent clusters (u;,l = 1,2, ..., k), which are interpreted as
behavioral roles. This already allows, for a given user, to evaluate the stability of his/her
behavior.

Creating user social roles In phase (c), for each user u;, we estimate the transition
matrix ¥; = {wgt}, where Tﬁé,t is the probability of user w; to have a transition from
the behavioral state ps to the behavioral state p;. The matrices W; have the tendency of
being rare and have high values on the main diagonal, since TDCK-Means privileges (a)
consecutive observation to belong to the same behavioral role and (b) that a user passes
through rather few behavioral roles (see the discussion in Section 3.2).

Each social role is a mixture of different behavioral roles and it incorporates the dynam-
ics of behavioral transitions. In other words, we interpret as a social role a succession of
transition through behavioral roles (similar to our previous application, the typical evolu-
tions of countries). We use a simple K-Means to regroup the users’ transition probabilities.
Notice that, in this second clustering, the individuals being clustered are the entities (i.e.,
the users) and not the observations, as it was in the case of TDCK-Means. The users’
transitions are represented by the matrices ¥; and the obtained cluster centroids are (a)
described in the same numeric space as the clustered instances and (b) interpreted as the
social roles. Each social role is, therefore, a matrix which gives two types of information: (a)
the probability of transitions from one role to the other and (b) the mixture of behavioral
5,5
passes from the behavioral role us to ps, which can be interpreted as the proportion of the
time in which u; stays in the behavioral role pus).

roles, denoted by the values on the main diagonal ( is the probability that the user u;

Such a representation has the inconvenient of being time orderless: it gives the proportion
in which behavioral roles are present in each social role, but it does not give their temporal
order of succession. One of the current work we are undergoing at the present deals with
inferring a graph structure for the constructed clusters (more details in Section 3.7 and in
Chapter 8). A graph approach would solve the order problem and detecting a social role
becomes detecting frequent paths in the generated graph.

3.6.3 Preliminary experiments

This section presents the experiments and the preliminary results that were performed
and obtained with the framework presented in Section 3.6.2. There is still work to be done,
mainly in parameter choice, interpretation and qualitative evaluation. A thorough parameter
sweep needs to be performed to motivate the choice of parameters and qualitative evaluation
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Figure 3.13 — The presence of the behavioral roles during the considered period of time (a)
heat maps showing the transition probabilities between behavioral roles for each extracted
social role (b).

measures are still lacking. Whatsoever, the first qualitative results are encouraging and we
choose to present them here.

Table 3.2 — The behavioral roles represented by the centroids constructed by TDCK-Means

m  g- out g- cat.

Role Date in-deg. out-deg. entropy  activ.

Index Index  power

w1 20/04/07 -0.898 -0.632 -0.856 -0.863 -0.540 1.333 -0.223
wa  22/04/07 -0.075 -0.886 -0.038  0.013 -0.892 -0.579 -0.861
w3 24/04/07 -0.977 -0.844 -0.964 -1.007 -0.843  -0.531 -0.923
ua  09/05/07 0.113 -0.210 0.068  0.249 -0.102 1.494  0.296
us  07/06/07 -0.152 0.179 -0.202 -0.152 0.189  -0.351 -0.064
ue  30/08/07 1.765 1.771 1.730 1.771 1.759 1.126 1.88
wr 16/09/07 0.928 0.908 0.955  0.856 0.819  -0.431 0.736

In phase (a), the behavioral characteristics are calculated, normalized and the values
are transformed into a fixed range by first performing min-max normalization and a log
transformation, afterwards. In phase (b) of the social role extraction framework, we execute
the TDCK-Means algorithm with the parameters k = 7, = 0.95,5 = 0.005,6 = 1.0 and
we construct 7 temporal clusters. These clusters regroup similar user activities and are
interpreted as behavioral roles. Figure 3.13a shows the presence of each of the behavioral
roles over the course of the year 2007. We can see that some behavioral roles are only
present in the first half of the year. This is due to the particularity of the TWOP dataset that
there is a very low activity during the summer (when there is no broadcast of TV series).
Therefore, there is a temporal gap in the user activities and this causes TDCK-Means to
create temporal clusters with a limited time-span.

Table 3.2 shows the centroids of each of the temporal clusters. Since a centroid sum-
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marizes the main features of the user activities in its cluster, we interpret the behavioral
roles based on the associated centroids y; (in the following discussion we also denote a
behavioral role with the name of the associated centroid). We can see, for example, that
user activities that fall into the behavioral role p; describe users who post across multiple
forums (hence the high entropy), but do not seem to engage other community members
(low in/out g-Index, low in/out-degree, low catalytic power). By contrast, behavioral role ji4
also exhibits a high entropy, but there is evidence that users in this role are receiving replies
(high in-degree). However, their replies are not from highly connected users, evidenced by
the slightly positive in g-Index value.

In phase (c), a K-Means clustering is performed on the behavioral transition probability
vectors, as described in Section 3.6.2 and 4 clusters are constructed, which are interpreted
as social roles. The social role is constructed as a mixture of different behavioral roles.
Figure 3.13b shows, for each constructed social role, the obtained transition probabilities,
depicted as heat maps. Most of the non-null values are on the main diagonal (lines are
numbered from bottom to top, columns from left to right). The values on the main diagonal
give the behavioral composition within each social role. Role 1 represents users who are
active members, able to generate and participate in active conversations within the forum.
Sometimes, these conversations are with highly connected users, though mostly at random.
Role 2 represents highly influential central figures, who take part and form the basis of
conversation in multiple sub-forums. Role 3 represents the slightly less active and more
focused users. Role 4 regroups users who are present throughout the peak of conversations,
and reduce their activity afterwards.

Interestingly, although users present in Role 1 move between nearly all the behavioral
roles, they are very rarely present in ug. Table 3.2 shows that in this behavioral role, users
are highly central to conversation on more than one forum. This shows that most of the
users on the TWOP forum are only interested in a single show, and subsequently will always
have low entropy. Another distinct role played within the forum is the behavioral role py.
Users presenting this role, although they are unable to generate (or contribute to) any
conversation, remain on the forum. Despite being ignored, users presenting the behavioral
role p4 continue to participate in conversations.

In conclusion This section presented some of the work we are currently performing with
the TDCK-Means algorithm in particular, and with the temporal dimension of data in
general. We have shown that our proposed temporal-aware clustering algorithm has new
promising investigation fields and can be applied to other type of data than the one pre-
sented in Section 3.5. The interpretation of the constructed social roles is still difficult,
given that they are expressed as an orderless mixture of behavioral roles. Our plans are
to extend TDCK-Means to include the inference of a graph structure of the constructed
clusters. Constructing the social roles as a path in the behavioral role graph would render
the interpretation easier.
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3.7 Conclusion and future work

In this chapter we have studied the detection of typical evolutions from a collection of
observations. The presented work tackles with one of our central research challenges, i.e.,
dealing with the temporal dimension of complex data. As we discussed at the beginning of
the chapter, we consider that the temporal dimension is more than just another descriptive
dimension of data, since it changes the definition of the learning problem. Therefore, one of
the original contributions presented in this chapter is a novel method to introduce temporal
information directly into the dissimilarity measure, weighting the descriptive component
by the temporal component. This new measure allows us to weight the importance of the
temporal component relative to the descriptive component and fine-tune its impact on the
learning process.

We have also proposed TDCK-Means, an extension of K-Means, which uses the
temporal-aware dissimilarity measure and a new objective function which takes into consid-
eration the temporal dimension. We use a penalty factor to make sure that the observation
series related to an entity get segmented into continuous chunks. We infer a new centroid
update formula, where elements distant in time contribute less to the centroid than the
temporally close ones. We have shown that our proposition consistently improves temporal
variance, without any significant losses in the multidimensional variance. The algorithm
can be used in other applications where the detection of typical evolutions is required, e.g.
career evolution of politicians or abnormal disease evolution. We have shown how our pro-
posal can be adapted to another specific problem, ¢.e. role identification in social networks,
and another dataset.

Perspectives of our work In our current work, we have only detected the centroids that
serve as the evolution phases. We are currently working on an extension of TDCK-Means,
which has embedded in the algorithm the construction of the evolution graph (as shown
in Figure 3.2a, p. 32). The objective is to construct, starting from the available complex
data, a graph structure of the clusters. The idea is to estimate, in addition to the cen-
troids and the temporal membership of observation to clusters, an adjacency matrix that
defines the graph. This will allow an succinct description of the evolution of an entity as
a path thought the constructed graph. Another direction of research will be describing the
clusters in a human readable form. We work on means to provide them with an easily com-
prehensible description by introducing temporal information into the unsupervised feature
construction algorithm (we give more details about this current work in Chapters 4 and 8).
We are also experimenting a method for setting automatically the values of TDCK-Means’s
parameters («, 8 and d), by using an approach inspired from multi-objective optimization
using evolutionary algorithms [Zhang & Li 2007].

The work presented in this chapter was published in the 24th IEEE International Confer-
ence on Tools with Artificial Intelligence, receiving the Best Student Paper Award |Ri-
zoiu et al. 2012].
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4.1 Learning task and motivations

Leveraging semantics when dealing with complex data is one of the core research chal-
lenges of the work in this thesis. This chapter tackles the crucial learning task of con-
structing a semantic-improved representation space for describing the data. While
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in the rest of our work, we either use external available information or the temporal aspect
of data in order to infer a more complete knowledge, in the work presented in this chapter
we concentrate on the semantics already available in the data itself.

In the context of automatic classification, a useful feature needs to express new informa-
tion as compared to other features. Correlated features do not bring any new information
(this problem was already presented in Section 2.1.4, p. 18). Whatsoever, when two features
co-occur, it is usually the result of a semantic connection between the two. Therefore, in
this chapter we have two missions: (a) improve the representation space of data by removing
correlations between features and (b) discover semantic links between features by analyzing
their co-occurrences in the data. To address these tasks, we propose a novel unsupervised
algorithm, uFC, that improves the representation space by reducing the overall correlation
between features, while discovering semantics links between features by performing feature
construction: pairs of highly co-occurring features are replaced with Boolean conjunctions.
The total correlation of the new feature set is reduced and the semantically-induced co-
occurrences in the initial set are emphasized.

Motivations One of the limitations of representing data in the feature-value vector format
is that the supplied features are sometimes not adequate to describe, in terms of classifi-
cation, the data. This happens, for example, when general-purpose features are used to
describe a collection that contains certain relations between individuals. E.g., a user of an
online photo sharing service might find that the proposed generic labels are not adapted for
tagging his/her photo collection. When labeling an image of a cascade, what should he/she
use? water, cascade or both (since a cascade is made out of water). Given this problem, our
departing premise is that it exists an underlying semantic in the feature set, which is de-
pendent on the dataset: the way features are organized over the observations is not random.
On the contrary it gives precious information about existing relations between features. If
features co-occur in the description of individuals, we consider that it is due to a semantic
connection between them. In the above example of the user labeling images, the tags people
and trees co-occur in pictures depicting a barbecue because it exists a link between the two
in the given context, and a new feature people and trees should better describe this context.
Furthermore, considering the case of complete labeling (i.e., a labeling in which no labels
are missing, we further discuss it in Section 4.10), given the co-occurrence pattern between
water and cascade (water always appears together with cascade), we can deduce that it
exists a special type of relation between the two (e.g., a “type-of” relation).

In our work presented in this chapter, we are interested in how to augment the expressive
power of the employed features set, by taking into account the underlying semantics present
in the dataset. Figure 4.1 presents a streamlined schema of this treatment. No external
information intervenes, the feature set is rewritten based only on the information contained
in the dataset. This means that the instances are translated into another space, defined by
the new feature set. The work presented in this chapter originated in the need to reorganize
a set of labels used for tagging images. We employ these labels later, in Chapter 5, in order
to construct a semantic-enriched numerical representation for images.

The remainder of this chapter is structured as follows. The rest of this section further
discusses the need to re-organize a feature set and presents an overview of the proposed
solutions. In Section 4.2, we briefly present related works that deal with rewriting a feature
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Figure 4.1 — Streamlined schema of improving data representation.

set. In Sections 4.3 and 4.4, we present our proposed algorithms and in Section 4.5 we
describe the evaluation metrics and the complexity measures. In Section 4.6, we perform
a set of initial experiments and outline some of the inconveniences of the algorithms. In
Section 4.7, by use of statistical hypothesis testing, we address these weak points, notably
the choice of the threshold parameter. In Section 4.8, a second set of experiments validates
the proposed improvements. The evaluation metrics we employ are opposing criteria and,
in order to optimize them, we make use of multi-objective optimization techniques that
we summarize in Section 4.9. Finally, Section 4.10 draws the conclusion and outlines some
current and future works.

4.1.1 Why construct a new feature set?

In the context of automatic classification (supervised or unsupervised), a useful feature
needs to express new information as compared to other features. A feature p;, that is highly
correlated with another feature p;, does not bring any new information, since the value of
pj can be deduced from that of p;. Subsequently, one could filter out “irrelevant” features
before applying the classification algorithm. But by simply removing certain features, one
runs the risk of losing important information of the semantic connection between the
features, and this is the reason why we choose to perform feature construction instead
(we have discussed the differences between feature selection and feature construction in
Section 2.1.4, p. 18). Feature construction attempts to increase the expressive power of the
original features by discovering missing information about relationships between features.

We deal primarily with datasets described with Boolean features. In real-life datasets,
most binary features have specific meanings. For example, a collection of images is tagged
using a set of labels (the Boolean features), where each label marks the presence (true) or
the absence (false) of a certain object in the image or give information about the context
of the image. The objects could include: water, cascade, mani festation, urban, groups or
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Figure 4.2 — Example of i 1mages tagged w1th {groups, road, building, interior}.

interior, whereas the contexts can be holiday or evening. In the given example, part of the
semantic structure of the feature set can be guessed quite easily. Relations like “is-a” and
“part-of” are fairly intuitive: cascade is a sort of water, paw is part of animal etc. But other
relations might be induced by the semantics of the dataset (i.e., the images in our example).
mani festation will co-occur with urban, for they usually take place in the city. Figure 4.2
depicts a simple image dataset described using the feature set {groups, road, building,
interior}. The feature set is quite redundant and some of the features are non-informative
(e.g., the feature groups is present for all individuals). Considering co-occurrences between
features, we could create the more eloquent features people at the interior and not on the
road (groupsA—road/Ninterior, describing the top row) and people on the road with buildings
on the background (groups A road A building, describing the bottom row).

The idea is to create a data-dependent feature set, so that the new features are as
independent as possible, limiting co-occurrences between the new features. At the same
time, given that one of our directive guidelines is to create human comprehensible outputs,
the newly created features should be easily comprehensible. The advantage is that, the newly
constructed features express the semantic connections between the primitive features. For
example, the fact that a newly constructed feature holiday Awater is set for a great number
of images is a good indicator of a vacation on the seaside. This already gives information
about the dataset, without even looking at the images.

4.1.2 A brief overview of our proposals

In order to obtain good results in classification tasks, many algorithms and prepro-
cessing techniques (e.g., SVM [Cortes & Vapnik 1995], PCA [Dunteman 1989| etc.) deal
with non-adequate variables by changing the description space (internally for the SVM).
The main drawback of these approaches is that they function as a black box, where the
new representation space is either hidden (for SVM) or completely synthetic and incompre-
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hensible to human readers (PCA). The literature also proposes algorithms that construct
features based on the original user-supplied features. However, to our knowledge, all of these
algorithms construct the feature set in a supervised way, based on the class information,
supplied a priori with the data.

The novelty of our proposals Relative to existing solutions in the literature, our novel
solutions have two advantages. In addition to constructing a representation space in which
features co-occur less, they (a) produce humanly comprehensible features and (b) they
function in the absence of pre-classified examples, in an unsupervised manner. The first
algorithm we propose is an adaptation of an established supervised algorithm, making it
unsupervised. For the second algorithm, we have developed a completely new heuristic
that selects, at each iteration, pairs of highly correlated features and replaces them with
conjunctions of literals. Therefore, the overall redundancy of the feature set is reduced. Later
iterations create more complex Boolean formulas, which can contain negations (meaning
absence of features). We use statistical considerations (hypothesis testing) to automatically
determine the value of parameters depending on the dataset, and a Pareto front [Sawaragi
et al. 1985]-inspired method for the evaluation. The main advantage of the proposed methods
over PCA or the kernel of the SVM is that the newly-created features are comprehensible to
human readers (features like people Amani festation Aurban and people A\—urbanA forest are
easily interpretable). As mentioned earlier, our algorithms function in a complete labeling
paradigm. We discuss in Section 4.10 how our approaches can be adapted to function with
missing label.

Using Boolean features Just like many other algorithms in the feature construction
literature, our algorithms are limited to binary features. Any dataset described using the
feature-value vector format can be converted to a binary format using discretization and
binarization. Data Mining presents extensive work [Fayyad & Irani 1993| on the discretiza-
tion of continuous features. While it is true that such a process has its drawbacks (e.g.,
loss of details and order), there are advantages to discretization: it renders the learning
algorithms less sensible to outliers and noise, it deals better with missing values, by cre-
ating a special feature which regroups them and it avoids the problems of asymmetry of
the distribution of observations corresponding to a variable. Some researchers [Kotsiantis
& Kanellopoulos 2006, Elomaa & Rousu 2004] even conclude that “most machine learning
algorithms produces better models when performing discretization on continuous variables”.

Some of the shortcomings of discretization can be overcomed by using cut-points. Instead
of discretizing by creating the feature “a € [v1,v2]”, we can create two features “a < v1” and

’ set to true. In this

“a < v9”. A value lower than v; would have both “a < v1” and “a < v9’
way the order relation between the binary features is preserved. This type of discretization
is inspired from the proportional-odds cumulative model, used with ordinal data in the field

of logistic regression [Agresti 2002].
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4.2 Related work

The literature proposes methods for augmenting the descriptive power of features. [Liu &
Motoda 1998]| collects some of them and divides them into three categories: feature selection,
feature extraction and feature construction.

Feature selection [Lallich & Rakotomalala 2000, Mo & Huang 2011] seeks to filter the
original feature set in order to remove redundant features. This results in a representation
space of lower dimensionality. These approaches address directly the problem of high data
dimensionality (described in Section 2.1.4, p. 18)) and created a space which is more adapted
for machine learning. Whatsoever, removing features runs the risk of loosing potentially
interesting information. In the example of the co-occurrence between cascade and water, a
feature selection approach might remove the cascade, since water is more general. But the
“is-a” induced by the dataset would be lost. Therefore, we do not consider any further this
kind of approaches.

Feature extraction is a process that builds a set of new features from the original
features through functional mapping [Motoda & Liu 2002]. For example, while the SVM
algorithm [Cortes & Vapnik 1995] does not properly build a new description space (the
kernel function only maps the description space into a predefined larger space, which is
separable in the context of supervised learning), we can assimilate this approach to a
feature extraction since the purpose is to better describe the data and the new space is
difficult to comprehend from a semantic point of view. Furthermore, supervised and non-
supervised algorithms can be boosted by pre-processing with principal component anal-
ysis (PCA) [Dunteman 1989|. PCA is a mathematical procedure that uses an orthogonal
transformation to convert a set of observations of possibly correlated variables into a set of
values of uncorrelated variables, called principal components.

Another technique which can be associate with feature extraction is Manifold learn-
ing [Huo et al. 2006|, which pursuits the goal to embed data that originally lies in a non-
linear manifold into a lower dimensional space, while preserving characteristic properties. It
can be assimilated to feature extraction methods, since the purpose is to build a new lower
dimensional description space for the data.

Feature extraction mainly seeks to reduce the description space and redundancy between
features (exception the SVM, which builds a higher dimensional space than the original
data). The problem with these approaches is that newly created features are rarely human
comprehensible and difficult to interpret, from a semantic point of view. Therefore, we
consider feature extraction methods inadequate for detecting relations between the original
features.

Feature Construction Feature Construction is a process that discovers missing informa-
tion about the relationships between features and augments the space of features by inferring
or creating additional features [Motoda & Liu 2002]. The accent in feature construction,
unlike feature extraction presented earlier, is on the comprehensibility of the newly created
features. These methods usually construct a representation space with a larger dimension
than the original space. Constructive induction [Michalski 1983] is a process of construct-
ing new features using two intertwined searches [Bloedorn & Michalski 1998|: one in the
representation space (modifying the feature set) and another in the hypothesis space (using
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Algorithm 2 General feature construction schema.

Input: P — set of primitive user-given features
Input: [ — the data expressed using P which will be used to construct features
Inner parameters: Op — set of operators for constructing features, M — machine learning
algorithm to be employed
Output: F — set of new (constructed and/or primitives) features.
F+P
tter <0
repeat
iter +— iter + 1
Liter + construct(lize,—1, F)
output <— Run M(Ijer, F')
F + FJ new feat. constructed with Op(F, output)
prune useless features in F
until stopping criteria are met.

classical learning methods). The actual feature construction is done using a set of construct-
ing operators and the resulted features are often conjunctions of primitives, therefore easily
comprehensible to a human reader. Feature construction has mainly been used with decision
tree learning. New features served as hypotheses and were used as discriminators in decision
trees. Supervised feature construction can also be applied in other domains, like decision
rule learning [Zheng 1995].

Algorithm 2, presented in [Gomez & Morales 2002, Yang et al. 1991], represents the gen-
eral schema followed by most feature construction algorithms. The general idea is to start
from I, the dataset described with the set of primitive features. Using a set of construc-
tors and the results of a machine learning algorithm M, the algorithm constructs (in the
construct step) new features that are added to the feature set. In the end, useless features
are pruned. These steps are iterated until some stopping criterion is met (e.g., a maximum
number of iterations performed or a maximum number of created features).

Most constructive induction systems construct features as conjunctions or disjunctions
of literals. Literals are the features or their negations. E.g., for the feature set {a,b} the
literal set is {a, —a, b, ~b}. Operator sets { AN D, Negation} and {OR, Negation} are both
complete sets for the Boolean space. Any Boolean function can be created using only op-
erators from one set. FRINGE [Pagallo & Haussler 1990| creates new features using a
decision tree that it builds at each iteration. New features are conjunctions of the last two
nodes in each positive path (a positive path connects the root with a leaf having the class
label true). The newly-created features are added to the feature set and then used in the
next iteration to construct the decision tree. This first algorithm of feature construction
was initially designed to solve replication problems in decision trees. The replication prob-
lem [Pagallo & Haussler 1990] states that in a decision tree representing a Boolean function
in its Disjunctive Normal Form, the same sequence of decision tests leading to a positive
leaf is replicated in the tree.

Other algorithms have further improved this approach. CITRE [Matheus 1990] adds
other search strategies like root (selects first two nodes in a positive path) or root-fringe
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(selects the first and last node in the path). It also introduces domain knowledge by ap-
plying filters to prune the constructed features. CAT [Zheng 1998] is another example of a
hypothesis-driven constructive algorithm similar to FRINGE. It also constructs conjunc-
tive features based on the output of decision trees. It uses a dynamic-path based approach
(the conditions used to generate new features are chosen dynamically) and it includes a
pruning technique.

Alternative representations There are alternative representations, other than conjunc-
tive and disjunctive. The M — of — N and X — of — N representations use feature-value
pairs. A feature-value pair AVj(A; = Vj;) is true for an instance if and only if the feature
A; has the value Vj; for that instance. The difference between M —of —N and X —of — N is
that, while the second one counts the number of true feature-value pairs, the first one uses a
threshold parameter to assign a value of truth for the entire representation. The algorithm
ID2-0f-3 [Murphy & Pazzani 1991 uses M — of — N representations for the newly-created
features. It has a specialization and a generalization construction operator and it does not
need to construct a new decision tree at each step, but instead integrates the feature con-
struction into the decision tree construction. The XofN algorithm [Zheng 1995] functions
similarly, except that it uses the X — of — N representation. It also takes into account the
complexity of the features generated.

Comparative studies like [Zheng 1996] show that conjunctive and disjunctive repre-
sentations have very similar performances in terms of prediction accuracy and theoretical
complexity. M —of — N, while more complex, has a stronger representation power than the
two before. The X —of — N representation has the strongest representation power, but the
same studies show that it suffers from data fragmenting more than the other three.

The problem with all of these algorithms is that they all work in a supervised envi-
ronment and they cannot function without a class label. In the following sections, we will
propose two approaches towards unsupervised feature construction.

4.3 uFRINGE - adapting FRINGE for unsupervised learning

We propose uFRINGE, an unsupervised version of FRINGE, one of the first fea-
ture construction algorithms. FRINGE [Pagallo & Haussler 1990] is a framework algorithm
(see Section 4.2), following the same general schema shown in Algorithm 2. It creates new
features using a logical decision tree, created using a traditional algorithm like ID3 [Quin-
lan 1986] or C4.5 [Quinlan 1993]. Taking a closer look at FRINGE, one would observe that
its only component that is supervised is the decision tree construction. The actual con-
struction of features is independent of the existence of a class attribute. Hence, using an
“unsupervised decision tree” construction algorithm renders FRINGE unsupervised.

Clustering trees Clustering trees |Blockeel et al. 1998] were introduced as generalized
logical decision trees. They are constructed using a top-down strategy. At each step, the
cluster under a node is split into two subclusters, seeking to maximize the intra-cluster
variance. The authors argue that supervised indicators, used in traditional decision trees
algorithms, are special cases of intra-cluster variance, as they measure intra-cluster class
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diversity. Following this interpretation, clustering trees can be considered as generalizations
of decision trees and are suitable candidates for replacing ID3 in uFRINGE.

Adapting FRINGE to use clustering trees is straightforward: it is enough to replace M
in Algorithm 2 with the clustering trees algorithm. At each step, uFRINGE constructs
a clustering tree using the dataset and the current feature set. Just like in FRINGE, new
features are created using the conditions under the last two nodes in each path connecting
the root to a leaf. FRINGE constructs new features starting only from positive leaves (leaves
labelled true). But unlike decision trees, in clustering trees the leaves are not labelled using
class features. Therefore, in uUFRINGE, we choose to construct new features based on all
paths from root to a leaf.

Newly-constructed features are added to the feature set and used in the next classifica-
tion tree construction. The algorithm stops when either no more features can be constructed
from the clustering tree or when a maximum allowed number of features have already been
constructed.

Limitations uFRINGE is capable of constructing new features in an unsupervised con-
text. It is also relatively simple to understand and implement, as it is based on the same
framework as FRINGE. However, it suffers from a couple of drawbacks. Constructed fea-
tures tend to be redundant and contain doubles. Newly-constructed features are added to
the feature set and are used, alongside old features, in later iterations. Older features are
never removed from the feature set and they can be combined multiple times, thus resulting
in doubles in the constructed feature set. What is more, old features can be combined with
new features in which they already participated, therefore constructing redundant features
(e.g., fa and fi1 A fa A fg resulting in fo A fi A fo A f3). Another limitation is controlling the
number of constructed features. The algorithm stops when a maximum number of features
is constructed. This is very inconvenient, as the dimension of the new feature set cannot be
known in advance and is highly dependent on the dataset. Furthermore, constructing too
many features leads to overfitting and an overly complex feature set.

These shortcomings could be corrected by refining the constructing operator and by
introducing a filter operator.

4.4 uFC - a greedy heuristic

We address the limitations of uFRINGE by proposing a second, innovative algorithm,
called uFC (Unsupervised Feature Construction). We propose an iterative approach that
reduces the overall correlation of features of a dataset by iteratively replacing pairs of highly
correlated features with conjunctions of literals. We use a greedy search strategy to identify
the features that are highly correlated, then we use a construction operator to create new
features. From two correlated features f; and f; we create three new features: f; A f;, f; /\]Tj
and f; A fj. In the end, both f; and f; are removed from the feature set. The algorithm
stops when no more new features are created or when it has performed a maximum number
of iterations. The formalization and the different key parts of the algorithm (e.g., the search
strategy, construction operators or feature pruning) are presented in the next sections.

Figure 4.3 illustrates visually, using Venn diagrams, how the algorithm replaces the old
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Figure 4.3 — Graphical representation of how new features are constructed - Venn diagrams.
(a) Iter. O: Initial features (Primitives), (b) Iter. 1: Combining fi; and f2 and (c) Iter. 2:
Combining f1 A fo and fs.

features with new ones. Features are represented as rectangles, where the rectangle for each
feature contains the individuals having that feature set to true. Naturally, the individuals
in the intersection of two rectangles have both features set to true. Figure 4.3a, shows the
configuration of the original feature set. fi and fs have a big intersection, showing that they
co-occur frequently. On the contrary, fo and f; have a small intersection, suggesting that
their co-occurrence is less than that of the hazard (negatively correlated). f3 is included
in the intersection of f; and f2, while f4; has no common elements with any other. fy is
incompatible with all of the others. The purpose of the algorithm is to construct a new
feature set, in which there are no intersections between the corresponding Venn diagrams.

In the first iteration (Figure 4.3b), fi and fy are combined and 3 features are created:
fiA fa, fiA fo and fi A fo. These new features will replace fi and fo, the original ones. At
the second iteration (Figure 4.3c), f1 A f2 is combined with f3. As f3 is contained in fi A fa,
the feature fi A fo A f3 will have a support equal to zero and will be removed. Note that fo
and fs are never combined, as they are considered uncorrelated. The final feature set will

be {fi A fa, fi A fa A fa, fi A fa A f3, J1 A fa, fa, [5}

4.4.1 uFC - the proposed algorithm

We define the set P = {pi1,p2,...,pr} of k user-supplied initial boolean features and
I = {iy,i9,...,1,} the dataset described using P. We start from the hypothesis that even if
the primitive set P cannot adequately describe the dataset I (because of the correlations
in the feature set), there exists a data-specific feature set F' = {f1, fo, ..., fm} that can be
created in order to represent the data better (meaning that the total correlation between
features is reduced). New features are created iteratively, using conjunctions of primitive
features or their negations (as seen in Figure 4.3). Our algorithm does not use the output
of a learning algorithm in order to create the new features. Instead we use a greedy search
strategy and a feature set evaluation function to determine if a newly-obtained feature set
is more appropriate than the former one.

The schema of our proposal is presented in Algorithm 3. The feature construction is
performed starting from the dataset I and the primitives P. The algorithm follows the
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Algorithm 3 uFC - Unsupervised feature construction.

Input: P — set of primitive user-given features
Input: [ — the data expressed using P which will be used to construct features
Inner parameters: A — correlation threshold for searching, limit iter — max no of
iterations.
Output: F — set of newly-constructed features.
FO «~— P
iter <0
repeat
iter < iter + 1
O < search correlated pairs(Ier, Fiter—1, )
Fiter <~ Fiter—l
while O # () do
pair < highest scoring pair(O)
Fiter < Fiter |J construct new feat(pair)
remove _candidate(O, pair)
prune_obsolete features(Fje,, liter)
Liter1 < Convert(litera Fiter)
until Fjer = Fiter—1 OR iter = limit _iter
F «+ Eter

general inductive schema presented in Algorithm 2. At each iteration, uFC searches for
frequently co-occurring pairs in the feature set created at the previous iteration (Fjer—1).
It determines the candidate set O and then creates new features as conjunctions of the
highest scoring pairs. The new features are added to the current set (Fj,), after which the
set is filtered in order to remove obsolete features. At the end of each iteration, the dataset
I is translated to reflect the feature set Fjer. A new iteration is performed as long as new
features were generated in the current iteration and a maximum number of iterations have
not yet been reached (limit_iter is a parameter for the algorithm).

Temporal complexity In order to calculate the complexity of the algorithm presented
in Algorithm 3, we consider that vector operations are indivisible and executed in O(1),
which is the case in modern vectorial mathematical environments (e.g., Octave). Vector
operations (e.g., sum of two vectors, element-wise multiplication) are performed in almost
constant time, due to the optimization in memory access and the parallelization of comput-
ing. Consequently, we consider that calculating the correlation between a pair of features
has a complexity of O(1). Therefore, the search of correlated pairs has a complexity of
|O| * O(1) = O(]O|). The maximum size of the set O is

Fiter—1| X (|Fiter—1| - 1)
2

0] < | < |Fiter—1]> (4.1)

where |Fjer—1] is the size of the created feature set at the previous iteration. In order to
calculate the maximum value of |Fj,—1|, we consider that, at maximum, 3 features are
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constructed based on a single pair. Consequently, the following is true:

3 3 2 3 iter 3 iter
|Fiter| S 5 X ’Fiterfll § <2> X |Fiter72| S S <2> X |FO| = <2> Xk (42)

Knowing that iter < max;ter, we deduce from Equations 4.1 and 4.2 that the maximum
size of the set O is:

3 2xiter 3 2xlimit;ser
0] < |Fier 1 < (2) <K < <2> < K (43

As the rest of the operation in the Algorithm 3 are executed in O(1) or O(k), and based
on the size of the set O calculated in Equation 4.3, the temporal complexity of uFC is

3 2xlimit;ter
limitier X O <<2> X k:2>

Considering that limit;., is a constant, we obtain the final complexity of uFC, which is
O(k?), therefore, quadratic with the initial size of the feature set.

In practice, if a pair (f;, f;) is chosen, the prune obsolete features function removes
any other pairs which contain f; or f;, which greatly reduces the number of considered pairs
and the execution time of the algorithm.

4.4.2 Searching co-occurring pairs

The search correlated pairs function searches for frequently co-occurring pairs of
features in a feature set F. We start with an empty set O < () and we investigate all possible
pairs of features (f;, f;) € F' x F. We use a function (r) to measure the co-occurrence of a
pair of features (f;, fj) and compare it to a threshold A. If the value of the function is above
the threshold, then their co-occurrence is considered as significant and the pair is added to
O. Therefore, the set O will be

O ={(fi, f;) € Fx F, i # jx((fi, ;) > A} (4.4)

For the r correlation function, we choose to use the empirical Pearson correlation
coefficient, which is a classical measure of the strength of the linear dependency between
two variables. r € [—1,1] and it is defined as the covariance of the two variables divided
by the product of their standard deviations. The sign of the r function gives the direction
of the correlation (inverse correlation for » < 0 and positive correlation for r > 0), while
the absolute value or the square gives the strength of the correlation. A value of 0 implies
that there is no linear correlation between the variables. When applied to Boolean vari-
ables, having the contingency table as shown in Table 4.1, the r function has the following

formulation:
axd—bxc

V(a+b) x (a+c)x (b+d) x (c+d)
The A threshold parameter will serve to fine-tune the number of selected pairs. Its impact

on the behaviour of the algorithm will be studied in Section 4.6.3. A method of automatic
choice of A using statistical hypothesis testing is presented in Section 4.7.1.

r((fi, f3)) =

(4.5)
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Table 4.1 — Contingency table for two Boolean features.

fi i
Ji a b
-fi ¢ d

4.4.3 Constructing and pruning features

Once O is constructed, uFC performs a greedy search. The function high-
est scoring pair is iteratively used to extract from O the pair (f;, f;) that has the
highest co-occurrence score.

The function construct new feat constructs three new features: f; A f;, fi N f; and
fi A f? fi and f; can be either primitives or features constructed in previous iterations.
They represent, respectively, the intersection of the initial two features and the relative
complements of one feature in the other. The new features are guaranteed by construction
to be negatively correlated. If one of them is set to true for an individual, the other two
will surely be false. At each iteration, very simple features are constructed: conjunctions of
two literals. The creation of more complex and semantically rich features appears through
the iterative process. In the example showed in Figure 4.3 (p.68), the feature fi A fo A f3 is
obtained by combining fi; and fo in a first iterations and then combining f1 A fo and f3 in
a second iteration.

After the construction of features, the remove candidate function removes from
O the pair (f;, f;), as well as any other pair that contains f; or f;. This is because
each features is authorized to participate in only one combination in each iteration. The
newly-generated features replace the old features. When there are no more pairs in O,
prune_obsolete features is used to remove from the feature set two types of features:

— features that are false for all individuals. These usually appear in the case of

hierarchical relations. We consider that f; and fo have a hierarchical relation if all
individuals that have feature f true, automatically have feature fo true (e.g., f1 “is a
type of” fo or fi “is a part of” f2). We denote this relation with the notation f; O f;.
One of the generated features (in the example fi A f2) is false for all individuals
and, therefore, eliminated. In the example of water and cascade, we create only
water A cascade and water N\ —cascade, since there cannot exist a cascade without
water. This is possible in the context of a complete labeling, in which a value of false
means the absence of a feature and not missing data.

— features that participated in the creation of a new feature. Effectively, all

{fil(fi, f;) € O, fj € F'} are replaced by the newly-constructed features.

{fir £ € FI(fi, f;) € O} Z22ADY e A £ T A £, Fi AT}

4.5 Evaluation of a feature set

To our knowledge, there are no widely accepted measures to evaluate the overall cor-
relation between the features of a feature set. We propose a measure inspired from the
“Iinclusion-exclusion” principle [Feller 1950]. In set theory, this principle permits to express
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the cardinality of the finite reunion of finite ensembles by considering the cardinality of
those ensembles and their intersections. In the Boolean form, it is used to calculate the
probability of a clause (disjunction of literals) as a function of its composing terms (con-
junctions of literals). For example, given a feature set with 3 features Fs = { f1, fo, f3}, then
the probability of the clause fi1 V f2V f3 is calculated as

p(f1V f2V f3) =p(v1) + p(v2) + p(v3)
— p(v1 Av2) — p(vr Avs) — p(ug A vs)
+ p(v1 Avo A 7)3)

Generalizing, given the feature set F' = {f1, fo, ..., fm}, we have:

AV 2V oV ) =3 [ (DY 3T p(fi A fin A A f)

k=1 1<i1 <...<ip<m
which, by putting apart the first term, is equivalent to:

m m

PV foV oV ) =D P+ D[ (D D p(fi Afia A A i)

=1 k=2 1<i1 <. <, <m

Without loss of generality, we can consider that each individual has at least one feature
set to true. Otherwise, we can create an artificial feature “null” that is set to true when
all the others are false. Consequently, the left side of the equation is equal to 1. On the
right side, the second term is the probability of intersections of the features. Knowing that
1 <37 p(fi) < m, this probability of intersection has a value of zero when all features
are incompatible (no overlapping). It has a “worst case scenario” value of m — 1, when all
individuals have all the features set to true.

Based on these observations, we propose the Overlapping Index evaluation measure:

o1(p) = Zi=1 2D =1

m—1

where OI(F') € [0, 1] and needs to be minimized. Hence, a feature set F; describes a dataset
better than another feature set Fy when OI(Fy) < OI(F3).

4.5.1 Complexity of the feature set

Number of features Considering the case of the majority of machine learning datasets,
where the number of primitives is inferior to the number of individuals in the dataset,
reducing correlations between features comes at the expense of increasing the number of
features. Consider the pair of features (f;, f;) judged correlated. Unless f; O f; or f; C f;,
the algorithm will replace {fi, f;} by {fi A fi, fi A f,fi A f;}, thus increasing the total
number of features. A feature set that contains too many features is no longer informative,
nor comprehensible.

The function unique(I) counts how many unique individuals exist in the dataset (I is
the dataset). Two individuals are considered different if and only if their description vectors



4.5. Evaluation of a feature set 73

are not equal. Therefore, unique(I) < |I|, as some individuals in the dataset might not be
unique. Considering F' as the constructed feature set and that uFC searches for correlated
pairs, when |F| = unique(I) there is a constructed features for each unique individual in
the dataset. Consequently, the maximum number of features that can be constructed by
uFC is mechanically limited by the number of unique individuals.

IF| < unique(I) < |1|

To measure the complexity in terms of number of features, we use:

|F| — | P]

ColF) = unique(l) — | P

where P is the primitive feature set. Cy measures the ratio between how many extra features
are constructed and the maximum number of features that can be constructed. 0 < Cp <1
and needs to be minimized (a value closer to 0 means a feature set with a lower complexity).

Cp is guarantied not to be negative only for the uFC algorithm. uFRINGE does not
have any filtering mechanism and, as the results in Section 4.6.1 show, the same pairs get
combined and the total number of constructed features explodes. Furthermore, Cy can be
used only for datasets for which the number of primitive attributes is lower than the number
of individuals. In certain applications, this assumption is not true, e.g., in text mining, a
typical dataset might have several hundreds documents (individuals) and several thousands
words in the dictionary serving as attributes (we present the textual numeric representation
in Section 6.2.2, p. 129). For these cases, we propose in the next paragraph another indicator,
based on the length of constructed features.

The average length of features At each iteration, simple conjunctions of two literals are
constructed. Complex Boolean formulas are created by combining features constructed in
previous iterations. Long and complicated expressions generate incomprehensible features,
which are more likely a random side-effect rather than a product of underlying semantics.

We define C as the average number of literals (a primitive or its negation) that appear
in a Boolean formula representing a new feature.

P={pilpe P}; L=PJP

> rer {lj € L] is aliteral in f; }|
- ||

Cy(F)

where P is the primitive set and 1 < Cj < oo, it does not have a superior bound and needs
to be minimized.

As more iterations are performed, the feature set contains more features (Cy grows)
which are increasingly more complex (C7 grows). This suggests a correlation between the
two. What is more, since C1 can potentially double at each iteration and Cy can have at
most a linear increase, the correlation is exponential. This correlation is further studies in
Section 4.6.4. For this reason and the fact that C; does not have a superior bound, in the
following sections we choose to use only Cy as the complexity measure.
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Overfitting All the machine learning algorithms risk to overfit the solution to the learning
set. There are two ways in which uFC can overfit the resulted feature set, corresponding to
the two complexity measures above: (a) constructing too many features (measure Cy) and
(b) constructing features that are too long (measure C1). The worst overfitting of type (a) is
when the algorithm constructs as many features as the maximum theoretical number (one
for each individual in the dataset). The worst overfitting of type (b) appears in the same
conditions, where each constructed feature is a conjunction of all the primitives appearing
for the corresponding individual. The two complexity measures can be used to quantify the
two types of overfitting. Since Cy and C) are correlated, both types of overfitting appear
simultaneously and can be considered as two sides of a single phenomenon.

4.5.2 The trade-off between two opposing criteria

Cy is a measure of how overfitted is a feature set. In order to avoid overfitting, the feature
set complexity should be kept at low values, while the algorithm optimizes the co-occurrence
score of the feature set (measure using the OI measure). Optimizing both the correlation
score and the complexity at the same time is not possible, as they are opposing criteria. A
compromise between the two must be achieved. This is equivalent to the optimization of two
contrary criteria, which is a very well-known problem in multi-objective optimization. To
acquire a trade-off between the two mutually contradicting objectives, we use the concept
of Pareto optimality [Sawaragi et al. 1985], originally developed in economics. Given
multiple feature sets, a set is considered to be Pareto optimal if there is no other set that
has both a better correlation score and a better complexity for a given dataset. Pareto
optimal feature sets will form the Pareto front. This means that no single optimum can be
constructed, but rather a class of optima, depending on the ratio between the two criteria.

We plot the solutions in the plane defined by the co-occurrence score, as the horizontal
axis and the complexity, as vertical axis, as shown in Figure 4.4. Constructing the Pareto
front in this plane makes a visual evaluation of several characteristics of the uFC algorithm
possible, based on the deviation of solutions compared to the front. The distance between the
different solutions and the constructed Pareto front visually shows how stable the algorithm
is. The convergence of the algorithm can be visually evaluated by how fast (in number of
performed iterations) the algorithm transits the plane from the region of solutions with
low complexity and high co-occurrence score to solutions with high complexity and low
co-occurrence. We can visually evaluate overfitting, which corresponds to the region of the
plane with high complexity and low co-occurrence score. Solutions found in this region are
considered to be overfitted.

In order to avoid overfitting, we propose the ‘“closest-point” heuristic for finding a
trade-off between OI and Cy. We choose to give the two criteria equal importance. We
consider as a good compromise, the solution in which the gain in co-occurrence score and
the loss in complexity are fairly equal. If one of the indicators has a value considerably
larger than the other, the solution is considered to be unsuitable. Such solutions would
have either a high correlation between features or a high complexity. Therefore, we perform
a battery of tests and we search a posteriori the Pareto front for solutions for which the
two indicators have essentially equal values. In the space of solutions, this translates into a
minimal Euclidian distance between the solution and the ideal point (the point (0;0)).
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Figure 4.4 — Example of the distribution of solutions in the (Co-occurrence, Complexity)

space and the Pareto optimal solutions.

Figure 4.5 — Images related to the newly-constructed feature sky A building A panorama on
hungarian: (a) Hungarian puszta, (b)(c) Hungarian Matra mountains.

4.6 Initial Experiments

Throughout the experiments, uFC was executed by varying only the two parameters:
A (defined in Equation 4.4) and limit;ie, (defined in Algorithm 3). We denote an execution
with specific values for parameters as uFC(\, limit;, ), whereas the execution where the
parameters were determined a posteriori using the “closest-point” strategy will be noted
uFC*(\, limitjte,). For uFRINGE, the maximum number of features was set at 300.
We perform a comparative evaluation of the two algorithms seen from a qualitative and
quantitative point of view, together with examples of typical executions. Finally, we study

the impact of the two parameters of uFC.
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(b)

Figure 4.6 — Images related to the newly-constructed feature water A cascade Atree A forest
on hungarian.

Datasets Experiments were performed on three Boolean datasets. The hungarian
dataset ! is a real-life collection of images, depicting Hungarian urban and countryside set-
tings. Images were manually tagged using one or more of the 13 tags. Each tag represents
an object that appears in the image (eg. tree, cascade etc.). The tags serve as features and
a feature takes the value true if the corresponding object is present in the image or false
otherwise. The resulted dataset contains 264 individuals, described by 13 Boolean features.
Notice that the work presented in this chapter deals only with reconstructing the descrip-
tion space and it does not deal with images (which is the object of Chapter 5). Therefore,
the hungarian dataset contains only the labels associated with the images. The images
themselves are used only for illustrative purposes in the qualitative evaluation. The street
dataset > was constructed in a similar way, starting from images taken from the LabelMe
dataset [Russell et al. 2008]. 608 urban images from Barcelona, Madrid and Boston were
selected. Image labels were transformed into tags depicting objects by using the uniformiza-
tion list provided with the toolbox. The dataset contains 608 individuals, described by 66
Boolean features.

The third dataset is “Spect Heart”? from the UCI. The dataset describes cardiac Single
Proton Emission Computed Tomography (SPECT) images. Each of the patients is clas-
sified into two categories: normal and abnormal (the “class” attribute). The database of
267 SPECT image sets (patients) was processed to extract 22 binary feature patterns. The
original corpus is divided into a learning corpus and a testing one. We eliminated the class
attribute and concatenated the learning and testing corpus into a single dataset. Unlike the
first two datasets, the features of spect have no specific meaning, being called “F17, “F2”,
e “F227.

4.6.1 uFC and uFRINGE: Qualitative evaluation

For the human reader, it is quite obvious why water and cascade have the tendency
to appear together or why road and interior have the tendency to appear separately. One

1. http://eric.univ-1lyon2.fr/~arizoiu/files/hungarian.txt
2. http://eric.univ-1lyon2.fr/~arizoiu/files/street.txt
3. http://archive.ics.uci.edu/ml/datasets/SPECT+Heart


http://eric.univ-lyon2.fr/~arizoiu/files/hungarian.txt
http://eric.univ-lyon2.fr/~arizoiu/files/street.txt
http://archive.ics.uci.edu/ml/datasets/SPECT+Heart
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Figure 4.7 — Images related to the newly-constructed feature headlight Awindshield Narm N
head on street.

would expect, that based on a given dataset, the algorithms would succeed in making
these associations and catching the underlying semantics. Table 4.2 shows the features
constructed with uFRINGE and uFC*(0.194,2) on hungarian. A quick overview shows
that constructed features manage to make associations that seem “logical” to a human
reader. For example, one would expect the feature sky A building A panorama to denote
images where there is a panoramic view and the sky, but no buildings, therefore suggesting
images outside the city. Figure 4.5 supports this expectation. Similarly, the feature sky A
butlding N groups N road covers urban images, where groups of people are present and
water A cascade A tree A\ forest denotes a cascade in the forest (Figure 4.6).
Comprehension quickly deteriorates when the constructed feature set is overfitted, when

the constructed features are too complex. The execution of uFC(0.184,5) reveals features
like:

sky A building A tree A building A forest A sky A building A groups A roadA

sky A building N\ panorama A groups A road A person A sky A groups A road

Even if the formula is not in the Disjunctive Normal Form (DNF), it is obvious that it is too
complex to make any sense. If uFC tends to construct overly complex features, uFRINGE
suffers from another type of dimensionality curse. Even if the complexity of features does
not impede comprehension, the fact that there are over 300 features constructed from 13
primitives makes the newly-constructed feature set unusable. The number of features is
actually greater than the number of individuals in the dataset, which proves that some of the
features are redundant. The actual correlation score of the newly-created feature set is even
greater than the initial primitive set. What is more, new features present redundancy, just
as predicted in Section 4.3. For example, the feature water A forest A grass Awater Aperson
which contains two times the primitive water.

The same conclusions are drawn from execution on the street dataset. uFC*(0.322, 2)
creates comprehensible features. For example headlight A windshield A arm A head (Fig-
ure 4.7) suggests images in which the front part of cars appears. It is especially interesting
how the algorithm specifies arm in conjunction with head in order to differenciate between
people (head A arm) and objects that have heads (but no arms).
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Table 4.2 — Feature sets constructed by uFC and uFRINGE.

primitives uFRINGE uFC(0.194, 2)

person water N\ forest A\ grass A water A person  groups A road A interior
groups panorama A building A forest A grass groups A road A interior

water tree A\ person A grass groups N\ road A interior
cascade tree N\ person N\ grass water A cascade N tree A forest
sky groups N tree N\ person water A cascade A tree A forest
tree person A interior water A cascade A tree A forest
grass person A interior sky A building A tree A forest
forest water A\ panorama A grass A groups A tree sky A building A tree A forest
statue water A\ panorama A grass A groups A tree sky A building A tree A forest
building statue N\ groups A groups sky A building A panorama
road statue A groups A groups sky A building N\ panorama
interior panorama A statue A groups sky A building A panorama
panorama  grass A water A forest A sky groups A road A person

grass N\ water N\ forest A %
person A grass A\ water N\ forest
groups A sky A grass A building

groups A sky A grass A building

person A water A forest A statue A\ groups

person A water A forest A statue N\ groups

grass N\ person A statue

grass N\ person A statue
. and 284 others

groups A road N\ person
groups A road A person

sky A building N\ groups A road
sky A building A groups A road
sky A building A groups A road
water A cascade

tree A\ forest

grass
statue

Table 4.3 — Values of indicators for multiple runs on each dataset.

Strategy #feat length OI Cy
. Primitives 13 1.00 0.24 0.00
8 uFC*(0.194, 2) 21 295 0.08 0.07
E uFC(0.184, 5) 36 11.19 0.03 0.20
uFRINGE 306 310 0.24 253
, Primitives 66 1.00 0.12 0.00
8 uFC*(0.446, 3) 81 214 0.06 0.04
B uFC(0.180, 5) 205 18.05 0.02 0.35
uFRINGE 233 2.08 020 0.42
Primitives 22 1.00 0.28 0.00
C  uFC*(0.432, 3) 36 2.83 0.09 0.07
2 uFC(0.218, 4) 62 881 0.03 0.20
uFRINGE 307 290 025 1.45
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4.6.2 uFC and uFRINGE: Quantitative evaluation

Table 4.3 shows, for the three datasets, the values of certain indicators, like the size of the
feature set, the average length of a feature C7, the OI and C{ indicators. For each dataset,
we compare four feature sets: the initial feature set (primitives), the execution of uFC*
(parameters determined by the “closest-point” heuristic), uFC with a set of parameters that
generate an overfitted solution and uFRINGE. For the hungarian and street datasets,
the same parameter combinations are used as in the qualitative evaluation.

On all three datasets, uFC* creates feature sets that are less correlated than the prim-
itive sets, while the increase in complexity is only marginal. Very few (2-3) iterations are
needed, as uFC converges very fast. Increasing the number of iterations has very little
impact on OI, but results in very complex vocabularies (large Cy and C7). In the feature
set created by uFC(0.180,5) on street, on average, each feature contains more than 18
literals. This is obviously too much for human comprehension.

For uFRINGE, the OI indicator shows very marginal or no improvement on spect
and hungarian datasets, and even a degradation on street (compared to the primitive
set). Features constructed using this approach have an average length between 2.08 and
3.1 literals, just as much as the selected uFC* configuration. But, it constructs between
2.6 and 13.9 times more features than uFC*. We consider this to be due to the lack of
filtering in uFRINGE, which would also explain the low OI score. Old features remain in
the feature set and amplify the total correlation by adding the correlation between old and
new features.

Some conclusions Similar conclusions can be drawn from the quantitative evaluations
as from the qualitative evaluation. Both uFC and uFRINGE succeed in capturing the
semantic links between the primitive features, by constructing comprehensible boolean for-
mulas. Whatsoever, each suffers from a dimensionality problem: uFRINGE constructs
too many new features, while uFC constructs features that are too complex. Furthermore,
uFRINGE fails in reducing the total correlation between the newly constructed features.
For uFC, it is crucial to control the complexity of the created features and the proposed
heuristic achieves this task. Only marginal complexity increases yield high correlation de-
creases.

4.6.3 Impact of parameters A\ and limit;,,

In order to understand the impact of parameters, we executed uFC with a wide range
of values for A and limit;., and studied the evolution of the indicators OI and Cy. For each
dataset, we varied A between 0.002 and 0.5 with a step of 0.002. For each value of A\, we
executed uFC by varying limit;.., between 1 and 30 for the hungarian dataset, and between
1 and 20 for street and spect (for execution time considerations, given that street and
spect are larger datasets than hungarian). We study the evolution of the indicators as a
function of limit;.,, respectively A, we plot the solution in the (OI, Cy) space and construct
the Pareto front.

For the study of limit;e,, we hold A fixed at various values and we make vary only
limitier. The evolution of the OI correlation indicator is given in Figure 4.8a. As expected,
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Figure 4.8 — Variation of indicators OI (top row) and Cy (bottom row) with limit;i, on
hungarian (left column) and with A on street (right column).

the measure ameliorates with the number of iterations. OI has a very rapid descent and
needs less than 10 iterations to converge on all datasets towards a value dependent on A.
The higher the value of A, the higher the value of convergence. The complexity has a very
similar evolution, shown in Figure 4.8¢), but in the inverse direction: it increases with the
number of iterations performed. It also converges towards a value that is dependent on A:
the higher the value of A, the lower the complexity of the resulting feature set.

Similarly, we study A by fixing limitse,. Figure 4.8b shows how OI evolves when varying
. As foreseen, for all values of limit;se,, the OI indicator increases with A\, while Cjy decreases
with A. O shows an abrupt increase between 0.2 and 0.3, for all datasets. For lower values
of A, many pairs get combined as their correlation score is bigger than the threshold. As
A increases, only highly correlated pairs get selected and this usually happens in the first
iterations. Performing more iterations does not bring any change and indicators are less
dependent on l¢mite,. For hungarian, no pair has a correlation score higher than 0.4.
Setting A higher than this value causes uFC to output the primitive set (no features are
created). In Figure 4.8d, the evolution of the complexity is, as in the previous case of
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Figure 4.9 — The distribution of solutions, the Pareto front and the closest-point on spect

dataset.

limit;e, very similar to the one of O, but in the inverse direction. The complexity of the
constructed feature set descends with the increase of \.

Pareto optimality To study Pareto optimality, we plot the generated solutions in the
(OI, Cp) space. Figure 4.9a presents the distribution of solutions, the Pareto front and the
solution chosen by the “closest-point” heuristic. The solutions generated by uFC with a wide
range of parameter values are not dispersed in the solution space, but their distribution is
rather close together. This shows good algorithm stability. Even if not all the solutions are
Pareto optimal, none of them are too distant from the front and there are no outliers.

Most of the solutions densely populate the part of the curve corresponding to low OI
and high Cjy. As pointed out in the Section 4.5.2; the area of the front corresponding to
high feature set complexity (high Cj) represents the overfitting area. This confirms that the
algorithm converges fast, then enters overfitting. Most of the improvement in quality is done
in the first 2-3 iterations, while further iterating improves quality only marginally with the
cost of an explosion of complexity. The “closest-point” heuristic keeps the constructing out
of overfitting, by stopping the algorithm at the point where the gain of co-occurence score
and the loss in complexity are fairly equal. Figure 4.9b zooms to the region of the solution
space corresponding for low numbers of iterations and both axis have equal scales.

4.6.4 Relation between number of features and feature length

Both the average length of a feature (C}) and the number of features (Cp) increase with
the number of iterations. In Section 4.5.1 we have speculated that the two are correlated:
Cy = f(Cp). For each X in the batch of tests, we create the Cy and C series depending
on the limit;,. Figure 4.10 shows the series for A € [0.002,0.07,0.15,0.19,0.2,0.3] (Cy is
plotted on a logarithmic scale). We perform a statistical hypothesis test, using the Kendall
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Figure 4.10 — The variation of complexities Cy and C; (log scale) for multiple values of A
on hungarian dataset.

rank coefficient as the test statistic. The Kendall rank coefficient is particularly useful as
it makes no assumptions about the distributions of Cy and C;. For all values of A, for all
datasets, the statistical test revealed a p-value of the order of 10~°. This is consistently
lower than habitually used significance levels and makes us reject the null independence
hypothesis and statistically prove that Cy and C are correlated. Furthermore, the graphics
in Figure 4.10 make us conclude empirically that there is an exponential correlation between

Copand Ci: Cy = f(eco).

4.7 Improving the uFC algorithm

The major difficulty of uFC, shown by the initial experiments, is setting the values of
parameters. An unfortunate choice would result in either an overly complex feature set or
a feature set where features are still correlated. But both parameters A and limit;,, are
dependent on the dataset and finding the suitable values would prove to be a process of trial
and error for each new corpus. The “closest-point” heuristic achieves acceptable equilibrium
between complexity and performance, but requires multiple executions with large choices of
values for parameters and the construction of the Pareto front, which might be very costly,
especially for large datasets.

We propose, in Section 4.7.1, a new method for choosing A based on statistical hypothesis
testing and, in Section 4.7.2, a new stopping criterion inspired from the “closest-point”
heuristic. These are integrated into a new “risk-based” heuristic, which approximates the
best solution while avoiding the time consuming construction of multiple solutions and the
Pareto front. The only parameter is the significance level «, which is independent of the
dataset, and which simplifies the task of running uFC on new, unseen datasets. A pruning
technique is also proposed.
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4.7.1 Automatic choice of A\

The co-occurrence threshold A is highly dependent on the dataset (e.g., on small datasets
it should be set higher, while on large datasets only a small value is required to consider
two features as correlated). Therefore, we propose to replace this user-supplied threshold
with a technique that selects only pairs of features for whom the positive linear correlation
is statistically significant. These pairs are added to the set O of co-occurring pairs (defined
in Section 4.4.2) and, starting from O, new features are constructed. We use a statistical
method: the hypothesis testing. For each pair of candidate features, we test the independence
hypothesis Hy against the positive correlation hypothesis Hj.

We use as a test statistic the Pearson correlation coefficient (calculated as defined in
Section 4.4.2) and test the following formally defined hypothesis: Hy : p =0 and Hy : p > 0,
where p is the theoretical correlation coefficient between two candidate features. We can
show that in the case of Boolean variables, having the contingency table shown in Table 4.1,
the observed value of the x? of independence is ngs = nr? (n is the size of the dataset).

2 is approximately following a >

Consequently, considering true the hypothesis Hy, nr
distribution with one degree of freedom (nr? ~ x?), resulting in 7y/n following a standard
normal distribution (rv/n ~ N(0,1)), given that n is large enough.

We reject the Hy hypothesis in favour of Hj if and only if r\/n > uj_q, where uj_ is
the right critical value for the standard normal distribution. Two features will be considered
significantly correlated when r((f;, f;)) > “=2.
of rejecting the independence hypothesis when it was in fact true. It can be interpreted as

The significance level « represents the risk

the false discovery risk in data mining. In our context of feature construction, « represents
the false construction risk, since this is the risk of constructing new features based on a pair
of features that are not really correlated. Statistical literature usually sets o at 0.05 or 0.01,
but levels of 0.001 or even 0.0001 are often used.

The proposed method repeats the independence test a great number of times, which
inflates the number of type I errors (a type I error is the incorrect rejection of a true null
hypothesis, a false positive). [Ge et al. 2003] presents several methods for controlling the
false discoveries. Setting aside the Bonferroni correction, often considered too simplistic and
too drastic, one has the option of using sequential rejection methods [Benjamini & Liu 1999,
Holm 1979], the g-value method of Storey [Storey 2002] or making use of bootstrap |Lallich
et al. 2006]. In our case, applying these methods is not clear-cut, as tests performed at each
iteration depend on the results of the tests performed at previous iterations. It is noteworthy
that a trade-off must be acquired between the inflation of false discoveries and the inflation
5%
m

of missed discoveries. This makes us choose a risk between 5% and , where m is the

theoretical number of tests to be performed.

4.7.2 Stopping criterion. Candidate pruning technique.

In this section, we deal with the second data-dependent parameter of uFC: limit;se,.
limitite, controls the number of iterations the algorithm performs and, implicitly, the com-
plexity of the constructed features. We replace the limit;., parameter with a stopping
criterion and propose a new data-independent heuristic. We also introduce a pruning tech-
nique, issued from the theoretical conditions necessary for the y? statistical testing.
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Risk-based heuristic We have introduced in Section 4.5.2 the “closest-point” for choos-
ing the values for parameters A and limit;;.,. It searches the solution on the Pareto front for
which the indicators are sensibly equal. We transform the heuristic into a stopping criterion:
OI and Cy are combined into a single formula, the root mean square (RMS) (also known
as the quadratic mean). The algorithm iterates while the value of RMS descends and it
stops iterating when RMS has reached a minimum. The RMS function has the following

formula RMS(OI,Cy) =4/ % and has the tendency of having a value which is closer
to the maximum between OI and Cy. This means that when OI is very high or Cj is very
high, the RMS function has a high value. Its value decreases as the difference between the
two indicators decreases (as shown in the experiments, in Figure 4.11). In our case, the
RMS reaches its minimum value when OI and Cy are having equal values.

The limit;., parameter, which is data-dependent, is replaced by the automatic RMS
stopping criterion. This stopping criterion together with the automatic A\ choice strategy,
presented in Section 4.7.1, form a data-independent heuristic for choosing parameters. We
will call the new heuristic risk-based heuristic. This new heuristic make possible to
=22 and limitie, using
the RMS function) and to avoid the time consuming task of computing a batch of solutions
and constructing the Pareto front.

approximate the data-dependent parameters (A is approximated by

Pruning The theoretical condition necessary in order to apply the x? independence test is

that the expected (theoretical) frequencies, considering true the Hy hypothesis, are greater

or equal than 5. We add this constraint to the new feature search strategy (defined in

Section 4.4.2). Pairs for whom the values of {@tblate) (atb)bie) (ate)ctd) o)) (btdcrd)
n ) n ) n n

are not greater than 5, will be filtered from the set of candidate pairs O. This stops the

algorithm from constructing features that are present for very few individuals in the dataset.

While this pruning technique is inherently related to the x? independence test, it can
also be applied with the initial form of the uFC algorithm, proposed in Section 4.4. As the
experiments presented in the next section show, applying the theoretical pruning successfully
tackles the problem of overfitting.

4.8 Further Experiments

We test the proposed improvements, similarly to the methods used in Section 4.6, on
the same three datasets: hungarian, spect and street. We execute uFC in two ways: the
classical uF'C (Section 4.4) and the improved uFC (Section 4.7). The classical uF'C needs to
have parameters A and limite, set (noted uFC(\, limit;e,)). uFC*(\, limit;,) denotes
the execution with parameters which were determined a posteriori using the “closest-point”
heuristic. The improved uFC will be denoted as uFC,(risk). The “risk-based” heuristic
will be used to determine the parameters and control the execution.

4.8.1 Risk-based heuristic for choosing parameters

Root Mean Square In the first batch of experiments, we study the variation of the
Root Means Square aggregation function for a series of selected values of \. We make vary
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limititer between 0 and 30, for hungarian, and between 0 and 20 for spect and street.
The evolution of RMS is presented in Figure 4.11.

For all A, the RMS starts by decreasing, as OI descends more rapidly than the Cj
increases. In just 1 to 3 iterations, RMS reaches its minimum and afterwards its value
starts to increase. This is due to the fact that complexity increases rapidly, with only
marginal improvement of quality. This behaviour is consistent with the results presented in
Section 4.6. As already discussed in Section 4.6.3, A has a bounding effect over complexity,

thus explaining why RMS reaches a maximum for higher values of A.

The “risk-based” heuristic The “risk-based” heuristic approximates the data-dependent
parameters A and limit;., using the data-independent significance level o and the RMS
stopping criterion. The second batch of experiments deals with comparing the “risk-based”
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Table 4.4 — “closest-point” and ‘risk-based” heuristics.

Strategy A limitier F#feat #Hcommon length Ol Co
., Primitives - - 13 - 1.00  0.235 0.000
g uFC*(0.194, 2) 0.194 2 21 19 2.95 0.076 0.069
< uFC,(0.001)  0.190 2 22 3.18 0.071 0.078
£ Primitives - - 66 - 1.00  0.121 0.000
g uFC*(0.446, 3) 0.446 3 87 23 2.14  0.062 0.038
@ uFC,(0.0001) 0.150 1 90 1.84 0.060 0.060
»  Primitives - - 22 - 1.00  0.279 0.000
® uFC*(0.432, 3) 0432 3 36 19 2.83  0.086 0.071
? uFC,(0.0001) 0.228 2 39 2.97  0.078 0.086

heuristic to the “closest-point” heuristic. The “closest-point” is determined as described in
Section 4.6. The “risk-based” heuristic is executed multiple times, with values for a € {0.05,
0.01, 0.005, 0.001, 0.0008, 0.0005, 0.0003, 0.0001, 0.00005, 0.00001}

Table 4.4 gives a quantitative comparison between the two heuristics. A risk of 0.001 is
used for hungarian and 0.0001 for spect and street (because of the size of these datasets,
see the discussion in Section 4.7.1 about repeating an independence test multiple time).
The feature sets created by the two approaches are very similar, considering all indicators.
Not only the differences between values for OI, Cy, average feature length and feature set
dimension are negligible, but most of the created features are identical. On hungarian, 19 of
the 21 features created by the two heuristics are identical. Table 4.5 shows the two features
sets, with non-identical features in bold.

Figure 4.12 presents the distribution of solutions created by the ‘“risk-based” heuristic
with multiple «, plotted on the same graphics as the Pareto front in the (OI, Cp) space.
Solutions for different values of risk a are grouped closely together. Not all of them are on
the Pareto front, but they are never too far from the “closest-point” solution, providing a
good equilibrium between quality and complexity.

Degraded performances On street, performances of the “risk-based” heuristic start to
degrade compared to uFC*. Table 4.4 shows differences in the resulted complexity and only
33% of the constructed features are common for the two approaches. Figure 4.13a shows
that solutions found by the “risk-based” approach are moving away from the “closest-point”.
The cause is the large size of the street dataset. As the sample size increases, the null
hypothesis tends to be rejected at lower levels of p-value. The auto-determined A threshold
is set too low and the constructed feature sets are too complex. Pruning solves this problem
as shown in Figure 4.13b and Section 4.8.2.

4.8.2 Pruning the candidates

The pruning technique is independent of the “risk-based” heuristic and can be applied
in conjunction with the classical uF'C algorithm. An execution of this type will be denoted



4.8. Further Experiments 87

Table 4.5 — Feature sets constructed by “closest-point” and ‘risk-based” heuristics on

hungarian.
primitives uFC*(0.194, 2) uFC,(0.001)
person groups A road A interior groups A road A interior
groups groups A road N interior groups N\ road N interior
water groups A road A interior groups A road A interior
cascade water A cascade N tree A forest water A cascade N tree A forest
sky water A cascade A tree A forest water A cascade A tree N\ forest
tree water A cascade N tree A forest water A cascade N tree A forest
grass sky A building N tree A\ forest  sky A building N tree A\ forest
forest sky A butlding N tree A forest  sky A building A tree A\ forest
statue sky A building N tree N\ forest  sky A building A tree N\ forest
building sky A building N\ panorama sky A building N\ panorama
road sky A building N\ panorama sky A building N\ panorama
interior sky A building N\ panorama sky A building N\ panorama
panorama groups A road /N person groups A road N person
groups A road N person groups A road N\ person
groups A road N person groups A road N person
water N\ cascade sky A building A groups A road
sky A building sky A building A groups A road
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uFCp (A, mazi,). We execute uFCp(\, mazxis,) with the same parameters and on the
same datasets as described in Section 4.6.3.

We compare uFC with and without pruning by plotting on the same graphic the two
Pareto fronts resulted from each set of executions. Figure 4.14a shows the pruned and
non-pruned Pareto fronts on hungarian. The graphic should be interpreted in a manner
similar to a ROC curve, since the algorithm seeks to minimize OI and Cj at the same
time. When one Pareto front runs closer to the origin of the graphic (0,0) than a second, it
means that the first dominates the second one and, thus, its corresponding approach yields
better results. For all datasets, the pruned Pareto front dominates the non-pruned one. The
difference is marginal, but proves that filtering improves results.

Some conclusions The most important conclusion is that filtering limits complexity. As
the initial experiments (Figure 4.9a) showed, most of the non-pruned solutions correspond
to very high complexities. Visually, the Pareto front is tangent to the vertical axis (the com-
plexity) and showing complexities around 0.8 —0.9 (out of 1). On the other hand, the Pareto
front corresponding to the pruned approach stops, for all datasets, for complexities lower
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Figure 4.13 — “Closest-point” and “Risk-based” heuristics for street without pruning (a)

and with pruning (b).
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Figure 4.14 — Pruned and Non-pruned Pareto Fronts on hungarian (a) and a zoom to the

relevant part (b).

than 0.15. This proves that filtering successfully discards solutions that are too complex to
be interpretable.

Last, but not least, filtering corrects the problem of degraded performances of the “risk-
based” heuristic on big datasets. We ran uFCp with risk a € {0.05, 0.01, 0.005, 0.001,
0.0008, 0.0005, 0.0003, 0.0001, 0.00005, 0.00001}. Figure 4.13b presents the distributions

of solutions found with the “risk-based pruned” heuristic on street. Unlike results without
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Figure 4.15 — uFC,(risk) stability on hungarian when varying the noise percentage: and
indicators (a) and number of constructed features (b).

pruning (Figure 4.13a), solutions generated with pruning are distributed closely to those
generated by “closest-point” and to the Pareto front.

4.8.3 Algorithm stability

In order to evaluate the stability of the uFC, algorithm, we introduce noise in the
hungarian dataset. The percentage of noise varied between 0% (no noise) and 30%. In-
troducing a certain percentage x% of noise means that % x k x n random features in
the datasets are inverted (false becomes true and true becomes false). k is the number of
primitives and n is the number of individuals. For each given noise percentage, 10 noised
datasets are created and only the averages are presented. uF'C,, is executed for all the noised
datasets, with the same combination of parameters (risk = 0.001 and no filtering).

The stability is evaluated using five indicators:

— Overlapping Index (OI);

— Feature set complexity (Cp);

— Number of features: the total number of features constructed by the algorithm;

— Common with zero noise: the number of identical features between the feature sets
constructed based on the noised datasets and the non-noised dataset. This indicator
evaluates the measure in which the algorithm is capable of constructing the same
features, even in the presence of noise;

— Common between runs: the average number of identical features between feature
sets constructed using datasets with the same noise percentage. This indicator evalu-
ates how much the constructed feature sets differ for a given noise level.

As the noise percentage augments, the dataset becomes more random. Less pairs of
primitives are considered as correlated and therefore less new features are created. Fig-
ure 4.15a shows that the overlapping indicator increases with the noise percentage, while
the complexity decreases. Furthermore, most features in the initial dataset are set to false.
As the percentage of noise increases, the ratio equilibrates (more false values becoming true,
than the contrary). As a consequence, for high noise percentages, the OI score is higher than
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for the primitive set.

The same conclusions can be drawn from Figure 4.15b. The indicator Number of
features descends when the noise percentage increases. This is because fewer features are
constructed and the resulting feature set is very similar to the primitive set. The number
of constructed features stabilizes around 20% of noise. This is the point where most of
the initial correlation between features is lost. Common with zero noise has a similar
evolution. The number of features identical to the non-noised dataset descends quickly and
stabilizes around 20%. After 20%, all the identical features are among the initial primitives.
Similarly, the value of Common between runs descends at first. For small values of
introduced noise, the correlation between certain features is reduced, modifying the order
in which pairs of correlated features are selected in Algorithm 3. This results in a diversity
of constructed feature sets. As the noise level increases and the noised datasets become
more random, the constructed feature sets resemble the primitive set, therefore augmenting
the value of Common between runs.

Some conclusions Introducing noise in the dataset is synonym to destroying the seman-
tic connections between the features. As the noise percentage increases, the co-occurrence
of features is increasingly the result of only hazard. As uFC was designed to detect the
relationships between features, it behaves as expected: it creates less new features or sim-
ply outputs the primitive set from a noise level onward. This can not be attributed to a
special sensibility of uFC to noise, but simply to the fact that noise destroys the existing
semantic information in the dataset, therefore making it impossible for uFC to detect any
connections.

4.9 Usage of the multi-objective optimization techniques

Throughout this chapter, we have used techniques based on multi-objective optimization
to visually evaluate the generated feature sets. We assess the distribution of the solutions
in the measure space, the solutions stability, the overfitting, the convergence and the pro-
posed heuristics. In this section, we resume the usage of these techniques into an empirical
evaluation approach.

The solution are visualized in the bi-dimensional space defined by the co-occurrence
score (OI) and the feature set complexity (Cp) evaluation measures. We make vary the
different parameters of our approaches and we plot the obtained solutions in the (OI, Cp)
plane. The two are opposing criteria: decreasing one criterion increases the other criterion.
Therefore, the notion of Pareto optimality can be applied. We construct the Pareto front
a posteriort, by simply selecting the solutions that are not dominated. We use the created
Pareto front to perform several evaluations.

Quick visualization of the distribution of solutions and the stability of solutions
The main usage of the Pareto front is that it allows a quick visualization of the distribution
of the solutions in the (OI,Cy) space. The visualization permits an empiric evaluation of
how a choice of parameters impacts the obtained dataset’s co-occurrence score and complex-
ity, compared to the Pareto-optimal solutions. Figures 4.9 (p. 81) and 4.16 present typical
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Figure 4.16 — street dataset: Visualizing the overfitting (a) and the speed of convergence

(b).

distributions of solutions in the measures space. The distance between the different solu-
tions and the Pareto front show how stable the constructed solutions are. The distribution
graphics plot the solutions grouped closely to the front, showing little variation and good
solution stability.

Visualization of the overfitting and convergence of the algorithm We have shown
in Section 4.6.1 that one of the major concerns when building a new feature set is the over-
fitting of the new features to the data. Overfitted sets are too complex to be comprehensible
by a human and they can be numerically detected due to their high complexity and low
co-occurrence score. By plotting a solution in the (OI, Cy) space, we can visually assess if
a solution is overfitted. Figure 4.16a depicts overfitting as the region close to the vertical
axis (low OI and high Cj score). Visibly, most of constructed solutions can be found in the
overfitting region. This is due to the high convergence speed of our algorithm. The speed
of convergence (in number of iterations) can be visually evaluated by how fast the algo-
rithm transits from solutions with low complexity and high co-occurrence score (south-est
region of the graphic) to solutions with high complexity and low co-occurrence (north-west
region). Figure 4.16b shows the points in the (OI,Cy) space correponding to the feature
sets constructed by uFC at each iteration. Most of the gain in the co-occurrence score is
done in the first 2 or 3 iterations. Starting from this point, solutions are usually overfitted.

Limiting the overfitting and detecting abnormal solutions Given the risk of over-
fitting, we proposed in Section 4.5.2 the “closest-point” heuristic, which consists in choosing
on the constructed Pareto Front the point where the loss in complexity and the gain in
co-occurrence score are fairly equal. Apart from avoiding overfitting, the “closest-point”
heuristic has the advantage of automatically choosing the values of the A and limit;e, pa-
rameters. However, the “closest-point” heuristic demands a full sweep of parameters values,
which can be quite time consuming. In Section 4.7.1 we propose the “risk-based” heuristic,
based on statistical testing. In Figure 4.12 (p. 85) we visually evaluate how the solutions
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obtained using the “risk-based” heuristic are positioned in comparison with the solution
obtained using the “closest-point” heuristic. We further evaluate the behavior of the “risk-
based” heuristic, by plotting the obtained solutions on the previously constructed Pareto
front. Therefore, we detect, in Figure 4.13a (p. 88), abnormal solutions on the street
dataset by visualizing their deviation from the front.

Comparing two approaches We correct the abnormal solution by introducing in Sec-
tion 4.7.2 a theoretical prunning technique. In Section 4.8.2, we construct the two Pareto
fronts corresponding to the execution of uFC with and without pruning. In Figure 4.14b
(p. 88), we plot the two Pareto fronts on the same graphic and we show that the one corre-
sponding to the filtered version constantly dominates the non-filtered version. We draw the
conclusion that filtering is beneficial, since it obtains better scores for both contradicting
criteria at the same time. Furthermore, it prevents entering the overfitting region.

4.10 Conclusion and future work

Conclusion The work presented in this chapter tackles one of the core research problems
of this thesis: leveraging semantics into data representation. More specifically, we adapt
the feature set used to describe the data to the semantic relationships between features
induced by the data itself. We propose two approaches towards augmenting the expressive
power of the features set employed to describe a boolean dataset. Our proposals construct
new features by taking into account the underlying semantics present in the dataset. Unlike
the other feature construction algorithms proposed so far in the literature, our proposals
work in an unsupervised learning paradigm. uFRINGE is an unsupervised adaptation of
the FRINGE algorithm, while uFC is a new approach that replaces linearly correlated
features with conjunctions of literals. We prove that our approaches succeed in reducing
the overall correlation in the feature set, while constructing comprehensible features. We
have performed extensive experiments to highlight the impact of parameters on the total
correlation measure and feature set complexity. Based on the first set of experiments, we
have proposed a heuristic that finds a suitable balance between quality and complexity and
avoids time consuming multiple executions, followed by a Pareto front construction. We
use statistical hypothesis testing and confidence levels for parameter approximation and
reasoning on the Pareto front of the solutions for evaluation. We also propose a pruning
technique, based on hypothesis testing, that limits the complexity of the generated features
and speeds up the construction process.

Conceptual articulation with previously presented work Our interest with the
representation of data initially originated in the need to reorganize a label set used for
tagging images. We employ these labels later, in Chapter 5, in order to improve the semantic
description of image data. This chapter’s proposals concerning data representation can be
articulated with those presented in Figure 3.1 of Chapter 3 as shown in Figure 4.17. The
connecting point is the data being represented in a semantic-aware numeric space. This
space can be improved by removing co-occurrences between features, before being used for
detecting typical evolutions or identifying social roles. Of course, integrating our approaches
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Figure 4.17 — Streamlined schema showing how the contributions in this chapter can be
conceptually articulated with those in previous the chapters.

would require additional development, some of which is presented in the next paragraph.

Current work We have already undergoing work toward incorporating temporal informa-
tion into the feature construction algorithm. This work will allow to simultaneously address
the two major research problems of this thesis: the semantic representation and using the
temporal dimension of data.

The datasets presented in Section 4.6 have no temporal component. The building block
of the uF'C algorithm is feature co-occurrence. For example, “manifestation” co-occurs with
“urban” because usually manifestations take place in cities. With the introducing of the tem-
poral information, the definition of the problem changes and the question of co-occurrence
in a temporal context arises. Some features might co-occur, but not simultaneously. For ex-
ample, the arrival of power of a socialist government and the increase of the country’s public
deficit might be correlated, but with a time lag, as the macro-economic indicators have a big
inertia. The purpose of this work is to detect such “correlations with a time lag” and create
new features like “socialist” and “public_ deficit” co-occur at a time lag §. This would allow
to (i) improve the data representation by using the temporal dimension in addition to data
semantics (ii) detect hidden temporal correlations, which might prove to be causalities. In
addition, the newly constructed temporal features can serve to create comprehensible labels
to temporal clusters extracted using TDCK-Means (proposed in Chapter 3).

We have extended the correlation coefficient defined in Equation 4.5 to calculate the
correlation at with a given fixed lag d. The experiments we performed so far show that
an “optimum” lag § can be determined, that maximizes the temporal correlation. We are
currently working on an extension of the and operator to the temporal case. The new
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features are no longer constructed as boolean expressions, but as temporal chains of the

form f; LIN fi LEN fr, meaning that f; precedes at at a time distance 1, which f; precedes
fr at a time distance 5.

Other future work A research direction we privilege is adapting our algorithms for data
of the Web 2.0 (e.g., automatic treatment of labels on the web). Several challenges arise,
like very large label sets (it is common to have over 10 000 features), non-standard label
names (see standardization preprocessing task that we have performed for the LabelMe
dataset in Section 4.6) and missing data. The problem of missing data is intimately linked
to the task of semantic-enriched numeric representation construction for images and the
assumption of complete labeling that we have made at the beginning of this chapter. In
complete labeling, if the label is not present, it therefore means that the object it denotes is
absent (in the case of object labeling in images). This assumption supposes binary labeling,
where true means presence and false means absence. In the case of incomplete labeling,
the absence of a label might also mean that the user forgot/chose not to label the given
image/document. Therefore, a value of false is no longer a sure indicator for the absence of
the given object. For example, when a user is labeling an image depicting a cascade and
has a choice between water, cascade or both, he/she might choose only cascade as it is the
most specific. This adds new challenges for the feature construction algorithm, since the
co-occurrence of water and cascade is no longer present. Similarly, created features which
are absent for all individuals can no longer be simply removed, since it is not sure if the
objects are really missing or simply their presence was not marked by the user.

Other planned developments include taking into account non-linear correlation between
variables by modifying the metric of the search and the co-occurrence measure. We also
consider converting generated features to the Disjunctive Normal Form for easier reading
and suppressing features that have a low support in the dataset. This would reduce the size
of the feature set by removing rare features, but would introduce new difficulties such as
detecting nuggets.

A related problem A somehow related class of problems is multi-label classifica-
tion |Tsoumakas & Katakis 2007]. These algorithms work in another paradigm (supervised
learning) and tackle another learning task (learning from a dataset with multiple class vari-
ables, aiming to learn to differentiate between classes and be able to predict the class of
unseen examples). The connection with our learning problem is how these solutions tackle
the co-occurrence between the class variable (i.e., when an individual has two labels at-
tached). In our work we do not relate or compare with these approaches, and we mention
them here to completeness reasons.

Solutions to the problem of multi-label classification usually fall into two cate-
gories [Tsoumakas & Katakis 2007]: (a) problem transformation methods and (b) algorithm
adaptation methods. (a) Problem transformation methods are those methods that transform
the multi-label classification problem either into one or more single-label classification or
regression problems. For example, protein classification using machine learning algorithms
is studied in [Diplaris et al. 2005]. For proteins that belong to several classes, they construct
new classes using boolean conjunctions: ¢ = ¢; AND ¢;. (b) Algorithm adaptation methods



4.10. Conclusion and future work 95

are those methods that extend specific learning algorithms in order to handle multi-label
data directly. For example, [Clare & King 2001] adapted the C4.5 algorithm for multi-
label data. They modified the formula of entropy in order to take into account the relative
frequency of each class. They also allow multiple labels in the leaves of the tree.

While showing some success in the problem of predicting multiple label classification,
this family of problems does not tackle the same task as the one stated in Section 4.1: they
do not deal with the co-occurrence in the description space. They are mostly interesting
at the level of the chosen approach and their similarity towards the construction of new
class attributes/labels. Whatsoever, even this construction is limited in the case of multi-
label classification: (a) negations cannot exist and, because of this fact, (b) not all boolean
formulas can be created (the AND operator is not a complete operator set). Furthermore,
(c) only very simple conjunctions of the initial labels can be created: they construct only
conjunction of two initial labels, which are not evolved into a more complex formula.

Most of the work presented in this chapter was published in the international Journal
of Intelligent Information Systems [Rizoiu et al. 2013a].
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5.1 Learning task and motivations

In this chapter, we address one of our core research challenges: leveraging semantics

when dealing with complex data. Images are one of the most widely encountered types of

complex data. Therefore, in this work we are interested in how to leverage external infor-

mation in order to construct a semantic-aware numeric representation for images.
The most prevalent learning task involving images is content-based image classification.
This is a difficult task especially because the low-level features used to digitally describe
images usually capture little information about the semantics of the images. In our work,

presented schematically in Figure 5.1, we tackle this difficulty by enriching the semantic con-

tent of the image representation using external knowledge. The underlying hypothesis of our

work is that creating a more semantically rich representation for images would yield higher
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machine learning performances, without the need to modify the learning algorithms them-
selves. This idea is similar to the similarity-based approaches in semi-supervised clustering
literature (presented in Section 2.2.1, p. 24), which introduce knowledge into unsupervised
algorithms by modifying the distance measure used to judge the similarity of individuals
and, afterwards, running the unmodified unsupervised algorithm. As a learning task, we
apply our proposition to the task of content-based image classification and we show that
semantically enriching the image representation yields higher classification performances.

Image

Data .
(" Semantic

Image Representation——| | | | | !

Construcﬁon‘ I

Data in the Numeric

User labels Vectorial Space

Figure 5.1 — Streamlined schema of our work presented in this chapter: leveraging external
knowledge to construct a semantically-enriched numeric description space for images.

The purpose of our work It is noteworthy that semantic are the focus of our work
with images, and not the task of content-based image classification. This point of view is
crucial for the rest of this chapter. The content-based image classification literature provides
many examples (some of which are mentioned in Section 5.2) of systems which achieve good
results. Our objective is not to compare with these approaches or show the superiority of
our methods on well-known image benchmarks. Likewise, we do not propose a new image
representation system. The objective of our work is to show how embedding semantics
into an existing image representation can be beneficial for a learning task, in this case
image classification. Starting from a baseline image representation construction (described
in Section 5.1.2), we propose two algorithms that make use of external information under
the form of non-positional tags, to enrich the semantics of the image representation. We
use both the baseline representation and our semantically improved representation in an
image classification task and we show that leveraging semantics consistently provides higher
scores.

Context and motivations Image creation and sharing pre-date written (textual)
sources. Some of the oldest cave painting go as far back in time as approximately 40,000
years ago. But the true explosion and large scale production of image data have started in
modern days, with the maturing of the image acquisition, storing, transmission and repro-
duction devices and techniques. At the same time, the Web 2.0 allowed easy image sharing
and recently even search capabilities (e.g., Instagram !, Flickr ?). Social Networks rely heav-
ily on image sharing (which sometimes may pose privacy problems, but such a discussion

1. http://instagram.com/
2. http://www.flickr.com/
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is out of the scope of this document). Because of the sheer volumes of created images,
automatic summarization, search and classification methods are required.

The difficulty when analyzing images comes from the fact that digital image numerical
format does not embed the needed semantic information. For example, images acquired
using a digital photo camera are most often stored in raster format, based on pixels. A pixel
is an atomic image element, which has several characteristics the most important being
the size (as small as possible) and its color. Other information can be color coding, alpha
channel etc.. Therefore, an image is stored numerically as a matrix of pixels. The difficulty
raises from the fact that low-level features, such as position and color of individual pixels,
do not capture too much information about the semantic content of the image (e.g., shapes,
objects). To address this issue, multiple representation paradigms have been proposed, some
of which will be presented in Section 5.2. The one showing the most promising results is the
“bag-of-features” representation, a representation inspired from the textual “bag-of-words”
textual representation (detailed later in Section 6.2, p. 128).

The remainder of the chapter is structured as follows: the rest of this section presents
an overview of our proposals (in Section 5.1.1) and how to construct a baseline “bag-of-
features” image description (in Section 5.1.2). In Section 5.2, we present a brief overview on
constructing a numerical image representation, concentrating on some of the state-of-the-
art papers that relate to visual vocabulary construction and knowledge injection into image
representation. Section 5.3 explains the two proposed approaches, followed, in Section 5.4,
by the experiments that were performed. Some conclusions are drawn and future work
perspectives are given in Section 5.5.

5.1.1 An overview of our proposals

The focus of our work is embedding semantic information into the construction of image
numerical representation. The external information is under the form of non-positional
labels, which signal the presence in the image of an object (e.g., car, motorcycle) or give
information about the context of the image (e.g., holiday, evening), but do not give any
information about its position of the image (in the case of objects). Furthermore, the labels
are available only for a part of the image collection, therefore positioning our work in a
semi-supervised learning context.

Our work is focused on the visual vocabulary construction (which is also referred in the
literature as codebook or model). In the “bag-of-features” (BoF') representation, the visual
words serve a similar role as the real textual words do in the “bag-of-words” representation.
We propose two novel contributions that leverage external semantic information and that
allow the visual vocabulary to capture more accurately the semantics behind a collection
of images. The first proposal deals with introducing the provided additional information
early in the creation of the visual vocabulary. A dedicated visual vocabulary is constructed
starting from the visual features sampled from images labeled with a given label. Therefore,
a dedicated vocabulary contains visual words adapted to describing the object denoted
by the given label. In the end, the complete visual vocabulary is created by merging the
dedicated vocabularies. In the second proposal, we add a filtering phase as a pre-processing
of the visual vocabulary construction. For any given image, we construct a known positive
set (images labeled with the same labels as the given image) and a known negative set
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(images that do not share any labels with the given image). If a visual feature, sampled
from the target image, is more similar to features in the known negative set than to features
in the known positive set, then there are high chances that it does not belong to the objects
denoted by the labels of the given image and it can, therefore, be eliminated. This reduces the
influence of irrelevant features in the vocabulary construction and increases the accuracy
of the classification process. The two approaches are combined into a visual vocabulary
construction technique and shown to consistently provide better performances than the
baseline technique presented in Section 5.1.2.

5.1.2 Constructing a baseline “bag-of-features” image numerical descrip-
tion

The “bag-of-features” [Csurka et al. 2004, Zhang et al. 2007] (BoF') representation is
an image representation inspired from the “bag-of-words” (BoW) textual representation,
which is detailed in Section 6.2 (p. 128). The BoW representation is an orderless doc-
ument representation, in which each document is depicted by a vector of frequencies of
words over a given dictionary. BoF models have proven to be effective for object classifica-
tion [Csurka et al. 2004, Willamowski et al. 2004], unsupervised discovery of categories [Fei-
Fei & Perona 2005, Quelhas et al. 2005, Sivic et al. 2005] and video retrieval [Sivic & Zisser-
man 2003, Chavez et al. 2008]. For object recognition tasks, local features play the role of
“visual words”, being predictive of a certain “topic” or object class. For example, a wheal is
highly predictive of a bike being present in the image. If the visual dictionary contains words
that are sufficiently discriminative when taken individually, then it is possible to achieve a
high degree of success for whole image classification. The identification of the object class
contained in the image is possible without attempting to segment or localize that object,
simply by looking which visual words are present, regardless of their spatial layout. Overall,
there is an emerging consensus in recent literature that BoF methods are effective for image

description [Zhang et al. 2007].

I f Image f Feature f Visual Vocabulary f Assign Features i
E Sampling ) Description | Construction ) to Visual Words ) |

Image “Bag-of-
Dataset features”
representation

Figure 5.2 — Construction flow of a “bag-of-features” numerical representation for images

Baseline construction Typically, constructing a BoF' image representation is a four
phase process, as shown in Figure 5.2. Starting from a collection P containing n images, the
purpose is to translate the images into a numerical space which the learning algorithm is
efficient. In phase 1, each image p; € P is sampled and I; patches (features) 3
Many sampling techniques have been proposed, the most popular being dense grid sam-
pling [Fei-Fei & Perona 2005, Vogel & Schiele 2007] and salient keypoint detector |[Csurka

are extracted.

3. l; is dependent on the content on the image (number of objects, shape etc.) and the extraction
algorithm used. It can vary from a couple of hundreds of features up to several tens of thousands.
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Figure 5.3 — Example of feature corresponding to the visual words associated with “wheal”
(in red) and “exhaust pipe” (in green)

et al. 2004, Fei-Fei & Perona 2005, Sivic et al. 2005]. In phase 2, using a local descriptor,
each feature is described using a h-dimensional? vector. The SIFT [Lowe 2004] and the
SURF [Bay et al. 2006] descriptors are popular choices. Therefore, after this phase, each
image p; is numerically described by V; € R” | the set of h-dimensional vectors describing
features sampled from p;.

Based on these numeric features, in phase 3, a visual vocabulary is constructed using,
for example, one of the techniques presented in Section 5.2.2. This is usually achieved
by means of clustering of the described features, and the choice is usually the K-Means
clustering algorithm, for its linear execution time required by the high number of features.
The visual vocabulary is a collection of m visual words, which are described in the same
numerical space as the features and which serve as the bases of the numerical space in which
the images are translated. More precisely, the centroids created by the clustering algorithm
serve as visual words. In clustering, centroids are the abstractions of a group of documents,
therefore summarizing the common part of the documents. In the above example, all the
visual features extracted from the region of an image depicting the wheal of a bike will
be regrouped together into one or several clusters. The centroid of each cluster represents
a visual word, which is associated with the wheal. Figure 5.3, we depict three examples
of images portraying bikes. In each image, we highlight 3 features: two corresponding to
visual words associated with “wheal” and one associated with a visual word associated with
“exhaust pipe”.

At phase 4, each sampled feature is assigned to a visual word. Similarly to the BoW
numerical description for texts, each image is described as a distribution over the visual
words, using one of the term weighting scheme (e.g., tf, tfxidf etc.) described in Section 6.2
(p. 128). In the previous example, the distribution vector associated with each of the im-
ages in Figure 5.3 has a high count for the visual words associated with “wheel”, “exhaust
pipe”, and “sadle”. The resulting numerical description can then be used for classification,
information retrieval or indexation tasks.

4. e.g. for the SIFT descriptor h = 128.
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5.2 Context and related work

Over the past decades computer vision domain has seen a large interest from the re-
search community. Its application are larger than image analysis and include augmented
reality, robotic vision, gesture recognition etc. Whatsoever, in the context of Internet-
originating images, one of the prevailing task is content-based image classification. Some
of the initial image classification systems used color histograms [Swain & Ballard 1991]
for image representation. Such a representation does not retain any information about
the shapes of objects in images and obtains moderate results. Other systems |[Haralick
& Shanmugam 1973, de Medeiros Martins et al. 2002, Varma & Zisserman 2003, Lazebnik
et al. 2003b] rely on texture detection. Texture is characterized by the repetition of ba-
sic elements or textons. For stochastic textures, it is the identity of the textons, not their
spatial arrangement, that matters. The BoF orderless representation has imposed itself
as the state-of-the-art in image representation, for classification and indexation purposes.
The process of constructing the representation includes sampling the image (phase 1 in
Figure 5.2), describing each features using an appearance-based descriptor (phase 2), con-
structing a visual vocabulary (phase 3) and describing images as histograms over the visual
words (phase 4).

The remainder of this section presents a brief overview (i) of the sampling strategies and
numerical descriptors for image keypoints present in literature (in Section 5.2.1) and (ii) of
the visual vocabulary construction techniques, concentrating on how external information
can be used to improve the vocabularies representativity (in Section 5.2.2).

5.2.1 Sampling strategies and numerical description of image features

Image sampling methods Image sampling for the BoF representation is the process of
deciding which regions of a given image should be numerically described. In Figure 5.2, it
corresponds to phase 1 of the construction of a BoF numerical representation. The out-
put of feature detection is a set of patches, identified by their locations in the image and
their corresponding scales and orientations. Multiple sampling methods exist |[O'Hara &
Draper 2011], including Interest Point Operators, Visual Saliency and random or dense
grid sampling.

Interest Point Operators [Lowe 1999, Kadir & Brady 2001] search to find patches that
are stable under minor affine and photometric transformations. Interest point operators
detect locally discriminating features, such as corners, blob-like regions, or curves. A filter
is used to detect these features, measuring the responses in a three dimensional space. Ex-
treme values for the responses are considered as interest points. The popular choice is the
Harris-Affine detector [Mikolajczyk & Schmid 2004|, which uses a scale space representation
with oriented elliptical regions. Visual Saliency [Frintrop et al. 2010] feature detectors are
based on biomimetic computational models of the human visual attention system. Less used
by the BoF literature, these methods are concerned with finding locations in images that
are visually salient. In this case, fitness is often measured by how well the computational
methods predict human eye fixations recorded by an eye tracker. There are research [Sivic
& Zisserman 2003] that argue that interest point-based patch sampling, while useful for
image alignment, is not adapted for image classification tasks. Examples are city images,
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for which the interest point detector does not consider relevant most of the concrete and
asphalt surroundings, but which are good indicators of the images’ semantics. Some ap-
proaches sample patches by using random sampling [Maree et al. 2005]. [Nowak et al. 2006]
compare a random sampler with two interest point detectors: Laplacian of Gaussian |Linde-
berg 1993] and Harris-Laplace [Lazebnik et al. 2003a|. They show that when using enough
samples, random sampling exceeds the performance of interest point operators. Spatial Pyra-
mid Matching is proposed in |Lazebnik et al. 2006]. Introduces spacial information in the
orderless BoF' representation by creating a pyramid representation, where each level divides
the image in increasingly small regions. Feature histogram is calculated for each of these
regions. The distance between two images using this spatial pyramid representation is a
weighted histogram intersection function, where weights are largest for the smallest regions.

Feature descriptors With the image sampled and a set of patches extracted, the next
questions is how to numerically represent the neighborhood of pixels near a localized region.
In Figure 5.2, this corresponds to phase 2 of the construction of a BoF numerical represen-
tation. Initial feature descriptors simply used the pixel intensity values, scaled for the size
of the region. The normalized pizel values have been shown [Fei-Fei & Perona 2005] to be
outperformed by more sophisticated feature descriptors, such as the SIFT descriptor. The
SIFT (Scale Invariant Feature Transform) [Lowe 2004] descriptor is today’s most widely
used descriptor. The responses to 8 gradient orientations at each of 16 cells of a 4x4 grid gen-
erate the 128 components of the description vector. Alternative have been proposed, such as
the SURF' (Speeded Up Robust Features) [Bay et al. 2006] descriptor. The SURF algorithm
contains both feature detection and description. It is designed to speed up the process of
creating features similar to those produced by a SIFT descriptor on Hessian-Laplace interest
points by using efficient approximations.

5.2.2 Unsupervised visual vocabulary construction

The visual vocabulary is a mid-level transition key between the low-level features and a
high-level representation. It is a prototypic representation of features that are discriminative
in a classification context.

The visual vocabulary is used to reduce dimensionality and to create a fixed length nu-
merical representation for all images®. Most BoF approaches use clustering to created the
visual vocabulary, usually the K-Means [Sivic & Zisserman 2003, Lazebnik et al. 2006, Jiang
et al. 2007] algorithm. K-Means is used for the fact that it produces centroids, which are
prototypes of similar features in the same cluster. Its linear execution time is a plus consid-
ering the high volume of individuals to be processed. Some authors [Jurie & Triggs 2005]
argument that in K-Means, centroids are attracted by dense regions and under-represent
less denser, but equally informative regions. Therefore, methods were proposed for allocat-
ing centers more uniformly, inspired by mean shift [Comaniciu & Meer 2002] and on-line
facility location [Meyerson 2001|. Other visual vocabulary construction techniques do not
rely on K-Means. For example, [Moosmann et al. 2007] use an Eztremely Randomized Clus-
tering Forest, an ensemble of randomly created clustering trees. This technique provides

5. The number of extracted features can greatly vary depending on the image and the method used for
sampling.
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good resistance to background clutter, but the main advantage over K-Means is the faster
training time.

One of the most important parameters in the construction of the visual vocabulary
is its dimension, which has a powerful impact on both performance and computational
complexity [Csurka et al. 2004, Jurie & Triggs 2005]. It has been shown [Jiang et al. 2007,
Lopez-Sastre et al. 2010, Nowak et al. 2006] that a large vocabulary may lead to overfitting
for construction techniques based on interest points detection. As our experiments show (in
Section 5.4.6), even a random vocabulary (in a random vocabulary, a number of features
are randomly chosen to serve as visual words) can lead to overfitting if its dimension is high
enough.

5.2.3 Leveraging additional information

The BoF' representation yields surprising results for image classification and indexing.
This is because there is an intrinsic relation between the “quantity” of semantic information
captured by the description space and the performances of machine learning algorithms
(e.g., in a classification task, the separability of individuals in the description space is cru-
cial). Therefore, one direction to further improve results is to construct new representations
that capture even more semantics from the raw image data. Another direction, the one
that we privilege in our work, is to use external information to further enrich the semantic
content of the constructed representation. In the case of Internet-originating images, pre-
cious information is given either by the textual context of images (e.g., titles, descriptions
etc.), or by labels attached to the images (e.g., on social networks websites, users have the
option to label the presence of their friends in images). Of course, the literature presents
approaches that leverage other resources to semantically enrich enrich the image representa-
tion (e.g., [Athanasiadis et al. 2005] propose a system that links low-level visual descriptors
to high-level, domain-specific concepts in an ontology). In Section 2.1.2 (p. 13), we have
already presented a number of learning tasks that can benefit from using image and textual
data simultaneously. In the following paragraphs, we detail some of the methods present
in the literature that address the use of additional information under the form of text or
labels in order to improve image classification results and we position our work relative to
these approaches.

Leveraging the image’s textual context In [Morsillo et al. 2009], the text that comes
alongside the images is used to improve the visual query accuracy. A BoF representation
for images is created as shown in Section 5.1.2, with the exception that color information is
also added to the keypoint description. An 11-dimension vector coding the color information
of the sampled patches is added to the 128-dimension vector generated by the SIFT. The
text that surrounds the images in the web pages is used to extract topics, using LDA [Blei
et al. 2003|. The inferred topics are, afterwards, used to describe the textual information
(therefore functioning as a dimension reduction technique). The textual and the image data
are used together to estimate the parameters of a probabilistic graphical model, which
is trained using a small quantity of labeled data. Another approach that uses the text
accompanying images originating from the Internet is presented in [Wang et al. 2009]. An
auxiliary collection of Internet-originating images, with text attached, is used to create a
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textual description of a target image. Images are described using three types of features: the
SIFT features, the GIST features [Oliva & Torralba 2001] and local patch color information.
For each test image, the K most similar images (in terms of visual features) are identified in
the auxiliary collection. The text associated with these near neighbor images is summarized
to build the text feature. The label of each image is considered as a unit (i.e., a whole phrase
is considered as an item) and the text feature is constructed as a normalized histogram
over labels. A text classifier and a visual classifier are trained and the outputs of the two
classifiers are merged for a more accurate description of the photo. [Mooney et al. 2008] use
co-training [Blum & Mitchell 1998] to construct a classifier starting from textual and visual
data. Text is described using a BoW representation, whereas images are described using
region-based features. Each image is divided into a number of regions of fixed dimension
(4-by-6 pixels), which are described using texture and color features. Co-training is a semi-
supervised classification technique, which first learns a separate classifier for textual data
and image data, using any labeled examples. The most confident predictions of each classifier
on the unlabeled data are then used to iteratively construct additional labeled training data,
and the classifiers are re-trained.

Leveraging external semantic knowledge Other solutions rely on external expert
knowledge in order to guide the visual vocabulary construction. This knowledge is most
often expressed under the form of class/category annotations or labels (e.g. signaling the
presence of an object inside an image) or semantic resources, such as WordNet. |Zhang
et al. 2009] uses an iterative boosting-like approach. Each iteration of boosting begins by
learning a visual vocabulary according to the weights assigned by the previous boosting
iteration. The resulting visual vocabulary is then applied to encode the training examples,
a new classifier is learned and new weights are computed. The visual vocabulary is learned
by clustering using K-Means a “learning” subset of image features. Features from images
with high weights have more chances of being part of the learning subset. To classify a new
example, the AdaBoost [Freund & Schapire 1997] weighted voting scheme is used.

[Perronnin et al. 2006] construct both a generic vocabulary and a specific one for
each class. The generic vocabulary describes the content of all the considered classes of
images, while the specific vocabularies are obtained through the adaptation of the universal
vocabulary using class-specific data. Any given image can, afterwards, be described using the
generic vocabulary or one of the class-specific vocabularies. A semi-supervised technique [Ji
et al. 2010], based on Hidden Random Markov Fields, uses local features as Observed
Fields and Semantic labels as Hidden Fields and employs WordNet to make correlations.
Some works [Fulkerson et al. 2008, Hsu & Chang 2005, Lazebnik & Raginsky 2009, Winn
et al. 2005] use mutual information between features and class labels in order to learn class-
specific vocabularies, by merging or splitting initial visual words quantized by K-Means.
Another work [Liu et al. 2009] presents an algorithm used for learning a generic visual
vocabulary, while trying to preserve and use the semantic information in the form of a
point-wise mutual information vector. It uses the diffusion distance to measure intrinsic
geometric relations between features. Other approaches [Marszalek & Schmid 2006] make
use of label positioning in the images to distinguish between foreground and background
features. They use weights for features, higher for the ones corresponding to objects and
lower for the background.
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Our positioning In the methods presented earlier, we identify several approaches to-
wards improving the results of classification algorithms: (a) improving image representation
semantics by combining multiple types of visual features (e.g., SIFT, color, texture etc., no
external information is leveraged), (b) modifying the classification algorithm to take into
account the text/label information (usually by training separate classifiers for (i) text and
image or (ii) based on each label), (¢) training and using multiple vocabularies to describe
an image and (d) making use of positional labels to filter features unlikely to be relevant.
Positional labels are labels in which the position of the objects in images are known, in
addition to their presence. This kind of labeling is usually more costly to perform than
non-positional labeling.

Our proposals deal with leveraging external information to enrich the semantics of the
image representation. The additional information is taken into account at the level of the
representation construction. We do not modify the learning algorithm, therefore our pro-
posals are compatible with existing classification algorithm. Our proposals can be classified
under the previous point (¢), since we construct multiple dedicated visual vocabularies. The
original contribution is that we propose a filtering algorithm that removes features unlikely
to be relevant for a given object using only non-positional labels.

5.3 Improving the BoF representation using semantic knowl-
edge

In this section we present two novel methods that leverage external semantic information,
under the form of non-positional object labels, into the visual vocabulary construction. Our
work is positioned in a weakly supervised context, similar to the one defined by |Zhang
et al. 2007|. Each label signals the presence of a given object in an image, but not its position
or boundaries. Our approaches use the semantic information to increase the relevancy of the
visual vocabulary. Our first approach follows an idea similar to some of the systems already
presented in Section 5.2.2. For each label, we construct a dedicated visual vocabulary, based
only on the images with a certain label. Such approaches have been shown [Perronnin
et al. 2006, Jianjia & Limin 2011] to improve accuracy over a general purpose vocabulary,
since specialized vocabularies contain visual words that more appropriately describe the
objects appearing in the image collection. In our second approach, we further improve
accuracy by proposing a novel pre-processing phase, which filters out features that are
unlikely to belong to the respective object. Our filtering proposal follows the framework of
the object recognition algorithm proposed in [Lowe 2004] and uses a positive and a negative
example set, constructed based on the labels. The filtering pre-processing is combined with
the dedicated visual vocabulary construction, and we show in Section 5.4 that this approach
consistently achieves higher accuracy then both a dedicated vocabulary (with no filtering)
and a general purpose vocabulary.

Including semantic knowledge The semantic knowledge is presented under the form
of a collection T of k labels, T = {t;|i = 1,2...k}. Each label is considered to denote an
object in the image (e.g., a car, a person, a tree), but no positional markers are available.
We make the assumption that the objects denoted by labels do not overlap in the images



5.3. Improving the BoF representation using semantic knowledge 107

and their appearance in the dataset is not correlated (e.g., if a car appears, it does not
necessarily mean that there is a person next to it). While these are strong assumptions,
we will discuss ways of relaxing them in Section 5.5. Furthermore, as the case of our work
concerning the unsupervised feature construction, we consider the labeling to be complete
(i.e., if an image does not have a given label, than the object does not appear in the image).
We discuss in further detail the effects of incomplete labeling after presenting our proposals,
in Section 5.3.2 and in Chapter 8.

Only a fraction of the image dataset is labeled and we use both labeled and unlabeled
images to construct the semantic-aware representation, therefore positioning our work in the
domain of semi-supervised learning. We denote by P the input collection, having n images.
ny images are labeled, thus forming the labeled set (P;), while the remaining images have
no labels. The a priori label information is presented in the form of a boolean matrix
Y € {0,1}** having n; lines and k columns so that

1 if image p; € P is labeled using ¢;;
Yijg = .
0 otherwise.

5.3.1 Dedicated visual vocabulary generation

The idea behind the BoF representation is that the visual words are predictive for certain
objects (as seen in Section 5.1.2). The quality of the visual words (and their predictive
power) would be enhanced if they are constructed starting only from the features extracted
from the respective objects. This would eliminate the background originated features and
features belonging to other objects. In a weakly supervised context, the object boundaries
are unknown, but selecting only the images that contain a certain object increases the
relevant /noise feature ratio. Consequently, the resulted visual words are more accurate
descriptions of the objects denoted by the labels. We propose to construct a dedicated visual
vocabulary for each label t; € T, starting only from features extracted from the images
labeled with ¢;.

The proposed method is presented in Algorithm 4. We make no assumptions about
the number of visual words needed to describe each object and, therefore, visual words
are distributed equally among objects. We construct k dedicated vocabularies, each one
containing m/k visual words. Other division techniques can be imagined and make part of
the perspectives of our work. Each dedicated vocabulary is created in the standard BoF
approach, shown in Section 5.1.2. For a given label ¢;, we create C;, the collection of all the
features extracted from images labeled with ¢;. Formally:

where V; is the set of numerically described features sampled from image p;. The func-
tion choose features at random is used to initialize the dedicated vocabulary M;
with m/k features randomly picked from C;. The function ameliorate using K-Means
evolves the visual vocabulary M; by clustering the features in C; around the visual words,
using the K-Means algorithm. The Euclidean distance is used to measure the similarity of
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Algorithm 4 Dedicated vocabulary generation algorithm.

Input: C ={V;|i=1,2..n1} - set of features sampled from labeled images
Input: Y € {0,1}"** _ image/label association matrix
Input: m - the dimension of the visual vocabulary M
Output: the visual vocabulary M having m visual words
// for each label
for i =1to k do
m; < m/k // size of the dedicated vocabulary
Ci=UiL Vilyji=1 // set of features in images labeled with t;
// construct dedicated visual vocabulary M;
M; < choose features at random (m;, C;)
M; < ameliorate using K-Means (M;, ;)
// merge the dedicated visual vocabularies
M<+0
for i =1to k do
M < concatenate vocabularies(M, M;)

the numeric description of two features. The set of resulted visual words represent more
accurately the object denoted by the label ¢;. At the end of the algorithm, the concate-
nate vocabularies function merges the dedicated vocabularies M;,i = 1,2..k into the
general visual vocabulary M. This ensures that the generated visual vocabulary contains
visual words which describe all the objects labeled with labels in 7.

Temporal complexity Algorithm 4 has a linear execution time, if we consider that ma-
trix operations are indivisible and executed in O(1), which is the case in modern vectorial
mathematical environments. Since we are executing K-Means k times, the temporal com-
plexity will be nojer X k X O(m/k x ng,), where ny, is the number of images labeled with ¢;
and nojer is the number of performed iterations (usually limited, thus ignored in practice).
That leads to a theoretical complexity of O(m x n), equal to that of K-Means.

5.3.2 Filtering irrelevant features

We propose a filtering mechanism in order to further increase the relevant/noise fea-
tures ratio in the dedicated vocabulary construction technique presented in the previous
Section 5.3.1: we detect and filter the features that are unlikely to be related to the object
denoted by a given label. Given an image p; € P1, we construct two auxiliary image col-
lections: the known positive set, which contains only images that are labeled identically as
pi, and the known megative set, which contains images that do not share any tags with p;
(given the complete labeling assumption). In practice, we limit the sizes of the known posi-
tive set and the known negative set to a maximum number of images, given by a parameter
maxFiles. We define K P, as the set of features sampled from images in the positive set
and KN, as the set of features sampled from the negative set:

KP,, ={fT€V;|Vt; € T for whichy;; =1 = y;, =1}
KNy, ={f" €V; |Vt €T for which y;; =1 = y;; = 0}
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(b)

Figure 5.4 — (a) An image labeled “motorbike”, (b) an image from the known positive set
and (c) an image from the known negative set

Consider a feature sampled from p; (f € V;), which is more similar to the features in the
negative collection (f~ € K Np,) rather than the ones in the positive collection (f € KP,,).
Such a feature has a higher chance of belonging to the background of p; rather than to the
objects in the image. It can, therefore, be filtered. To measure the similarity of two features,

the euclidean distance is usually used: ||f1 — fal| = \/2?21 (f1i — f2.)*. Formally, for a
feature f sampled from an image p;:

f e Vis filtered < AfT € K P, so that I1f=frI<é
ith § = i —f- 5.1
wi axfemKljr\lfpin 7 (5.1)

where § is the filtering threshold and o € R is a parameter, which allows the fine tuning of
the filtering threshold. The filtering threshold ¢ is defined as the distance from the feature f
to the closest feature in the known negative set, scaled by tuning parameter «. The influence
of parameter « on the effectiveness of the filtering is studied in Section 5.4.7. A feature f is
considered similar to a feature f* € KP,, if and only if ||f — fT|| is lower than the filtering
threshold. Therefore, the feature f is removed when it has no similar feature in the known
positive set.

Let’s take the example of image collection depicted in Figure 5.4. The images in Fig-
ures 5.4a and 5.4b are labeled “motorbike”, whereas the image in Figure 5.4c is labeled “city”.
The target image in Figure 5.4a has buildings in the background, and any feature sampled
from that region of the image would be irrelevant for the object motorbike. Figure 5.4b
serves as known positive set, while Figure 5.4c serves as known negative set. We take the
example of two features f; sampled from the wheal of the motorbike (shown in green) and
f2 sampled from the buildings in the background (shown in red), of the target image. For
f1, at least one similar feature exists in the positive set. For f5, no similar features exist in
the known positive set. fo is, therefore, eliminated as it is considered not relevant for the
object motorbike.

Algorithm 5 presents the proposed filtering algorithm. The algorithm has two parameters
maxFiles, which controls the maximum size of the KP,, and KN, sets, and «, which
controls how strict is the filtering. For each labeled image p;, the functions create KP
and create KN are used to created the feature sets K P,, and, respectively, K Np,. The
count similar function is used to count how many features in K P, have the similarity
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Algorithm 5 Filtering irrelevant features.

Input: C ={V;|i=1,2..n1} - set of features sampled from labeled images
Input: Y € {0,1}"** _ image/label association matrix
Parameter: a - parameter controlling the threshold
Parameter: maxF'iles - controls the size of the known positive and known negative sets
Output: Vif , 1 =1,2..n1 - sets of the filtered features in each labeled image
// for each labeled image
for i =1ton; do
Vi—p
Ti —{tj|yi; =1} // the labels of image p;
KP,, < create KP(i, T;, Y, C, maxFiles) // KnownPositive set
KN, < create KN(i, T;, Y, C, maxFiles) // KnownNegative set
// process each feature in current image p;
for each f € V; do
0 < ax min_distance(f, KN,,)
count <— count _similar(f, KP,,, )
if count >0 then

v/« v U

distance lower than the filtering threshold. If there exists at least one such feature in the
K P, set, then f is added to Vif , the filtered feature set of p;.

Temporal complexity In Algorithm 5, for comprehension reasons, operations are pre-
sented for each feature f sampled from the image p;. In reality, in vectorial mathematical
environments (e.g. Octave), matrix operations are unitary and considered as executed in
O(1). Thus, the algorithm has a linear execution time O(n; x mazFiles).

Incomplete labeling In the proposed approaches, as well as in the experiments presented
in Section 5.4, we make the assumption of complete labeling: if an object occurs in an
image, then it is sure that the image has its corresponding label attached. In the case of
incomplete labeling, an object might appear in an image p, but the associate label ¢ is not
set for the image p. For the dedicated vocabulary construction, incomplete labeling has a
limited impact, especially if the dataset is large enough. It only means that the image p
is left out when constructing the vocabulary for label ¢t. For the filtering proposal, missing
labels mean that the image p has a chance of being selected for the known negative set
for an image labeled with ¢. This translates into a very high filtering threshold. Still, this
should not pose problems if the known positive set also contains images depicting the given
object. A given feature needs to have only one similar feature in the known positive set to
be considered representative for the object. Furthermore, considering that our algorithms
are devised to work in a semi-supervised context, a limited number of completely labeled
images is required. This reduces considerably the manual labeling effort.
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Figure 5.5 — Schema for evaluating multiple visual vocabulary construction techniques.

5.4 Experiments and results

As already pointed out in Section 5.1, the focus of our work is enriching the semantics
of the numerical representation of images. Therefore, the purpose of the experiments pre-
sented in this section is to compare the semantically enriched representations created by
our proposals to a standard baseline representation, created as described in Section 5.1.2.
Whatsoever, comparing the semantically-enriched and the baseline representations cannot
be done directly, and they are evaluated in the context of a machine learning task, in this
case a content-based image classification.

More precisely, given the fact that we perform the semantic injection at the level of the
visual vocabulary construction, the experimental protocol streamlined in Figure 5.5 and
further detailed in Section 5.4.1, is designed to quantify the differences of performance due
only to the visual vocabulary construction. The evaluation is a five phase process, out of
which four phases (1, 2, 8 and 5) are identical for all techniques. The first four phases
correspond to the BoF representation construction (see Figure 5.2, p. 100), while the last
phase corresponds to the learning algorithm.

We summarize here after each of the phases, which are detailed in the next sections:

— phase 1: image sampling, identical for all compared approaches;

— phase 2: feature numerical description of patches, identical for all compared ap-
proaches;

— phase §: visual vocabulary construction, using the baseline approaches and our
semantically-enriching approaches;

— phase 4: feature assignment to visual words, identical for all compared ap-
proaches;

— phase 5: learning algorithm, each resulted representation is used with two classifiers
(a clustering-based and an SVM), identical for all compared approaches.
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5.4.1 Experimental protocol

Starting from a given image dataset, we construct, for each image, four BoF represen-
tations corresponding to the four evaluated visual vocabulary construction techniques (in
phase 3). The image sampling (phase 1), the feature description (phase 2) and the image
description (phase /) are performed each time using the same algorithms and with the same
parameters. In the end, the performances of each obtained BoF' representation are measured
and compared in the context of a content-based image classification task (detailed in Sec-
tion 5.4.2). The visual vocabulary construction phase is the only phase to vary between
the different constructed representations. Therefore, we consider the classifier performance
differences a direct consequence of the vocabulary construction.

The invariant phases 1, 2 and 4 In phase 1, images are sampled using a Hessian-Affine
region detector and patches are described, in phase 2, using the SIFT descriptor [Lowe 2004].
We use the default parameters for these algorithms and we keep them unchanged during
the experiments. The visual vocabulary is constructed in phase 8 using the construction
technique to be evaluated. In phase 4, the final numerical representation is created, for each
image, by associating features to visual words, using the ¢f term weighting scheme. To re-
duce the hazard component that appears in all the considered techniques, each construction
is repeated 3 times and average results are presented.

Compared vocabulary construction techniques (phase 3) Four visual vocab-
ulary construction techniques are evaluated: two classical techniques random, ran-
dom-+km and our proposals model and filt4+model. random constructs a random
vocabulary (features are randomly chosen to serve as visual words). For random-+km,
we take the random features selected previously and we ameliorate them by using the
ameliorate using K-Means function presented in Section 5.3.1. random+km is the
baseline construction technique presented in Section 5.1.2. model is our proposal for ded-
icated vocabulary construction presented in Algorithm 4. In filt4+model we applied the
filtering technique presented in Algorithm 5 as a pre-processing phase before the dedicated
vocabulary construction.

5.4.2 The learning task: content-based image classification

Each of the image representations obtained as shown in the previous sections, are used
in a content-based image classification task. Two classifiers, an SVM and a clustering-based
classifier, are trained and evaluated on each representation, as described in the following
paragraphs.

The SVM classifier [Cortes & Vapnik 1995] The SVM classifier evaluation respects
the experimental setup recommended by the authors of the Caltech101® dataset. One
of the challenges when evaluating in Data Mining is the disequilibrium between the class
cardinality (usually it is the minority class that is of interest). This disequilibrium can
cause errors in estimating the generalization error of the constructed model. Usually, the

6. http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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disequilibrium is the result of a certain reality in the population from which the sample
was extracted (e.g. the population of sick individuals is a minority compared to the healthy
population). But in the case of image datasets like Caltech101, the disequilibrium is only
the result of the choice of its creator and represents no reality that needs to be taken into
account. We choose to equilibrate the classes before training the classifier, by randomly
selecting 30 examples for each label to be part of the learning set. 15 images in the learning
corpus are randomly selected to be part of the labeled set P;. We test on all remaining
individuals, which means that the generalization error on majority classes will be better
estimated. Evaluation indicators are calculated for each class and we report only the non-
weighted averages. The process is repeated 10 times: we create 10 learning sets and the
corresponding 10 testing sets. We report the average performances over the 10 executions.
The results are expressed using the True Positive Rate, because this measure is usually used
in the literature when reporting results on Caltech101 and RandCaltech101.

A clustering-based classifier The clustering-based evaluation task is inspired from the
unsupervised information retrieval field and it is based on clustering. A learning set of the
image collection is clustered into a number of clusters and each cluster is assigned a label,
using a majority vote. Each image in the test corpus is assigned to its nearest centroid and
it is given the predicted label of the cluster. Predicted labels are compared to the real labels
and classical information retrieval measures (i.e., precision, recall, Fy.orc) are calculated.

The evaluation of the clustering-based classifier is performed using a stratified holdout
strategy. The images are divided into a learning corpus (67% of images in each category)
and a test corpus (33% of the images in each category). 50% of images in the learning
corpus are randomly selected to be part of the labeled set ;. For the rest, the labels are
hidden. Images in the learning set are then clustered into nc clusters using K-Means. nc
varies between 50 and 1000 (step 50) for Caltech101 and RandCaltech101 and between 3
and 90 (step 3) for Caltech101-3 (Caltech101-3 contains only 3 classes, see Section 5.4.3).
To eliminate the effect of disequilibrium between class sizes, we calculate and report the
non-weighted averages over tags of these indicators. To measure the classification accuracy,
we use the Fseore (the harmonic average of precision and recall), a classical Information
Retrieval measure. For each combination (vocabulary dimension, ne, vocabulary algorithm),
the clustering and prevision phase is repeated 25 times, to eliminate the influence of the
random initialization of the K-Means in the clustering-based classifier.

5.4.3 Datasets

Experiments were performed on the Caltech101 [Fei-Fei et al. 2007] and
RandCaltech101 [Kinnunen et al. 2010] datasets. Caltech101 contains 9144 images, most
of them in medium resolution (300x300 pixels). It is a heterogeneous dataset, having 101
object categories and one reserve. Each category class is considered to be a label. Spatial
positioning of objects is not used, therefore positioning ourselves in a weakly supervised
context. Some authors argue that Caltech101 is not diverse enough and that backgrounds
often provide more information than the objects themselves. RandCaltech101 is obtained
from Caltech101 by randomly modifying the backgrounds and the posture (position, ori-
entation) of objects. It has been shown |Kinnunen et al. 2010] that classification is more
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challenging on RandCaltech101 than on Caltech101.

Because Caltech101 is an unbalanced dataset, with category sizes ranging from 31
to 800 images, we have taken 3 out of the biggest categories (airplanes, Motorbikes and
Faces easy) and created another corpus, denoted Caltech101-3. It contains 2033 images.
The advantage of the new corpus is that it provides many examples for each category and
it is balanced category-wise. This allows us to study how our propositions behave on both
balanced and unbalanced datasets.

5.4.4 Qualitative evaluation

Figure 5.6 — Example of images from “easy” classes (top row) and “difficult” classes (bottom
row)

In a classification tasks, some classes are naturally easier to recognize than others. This
happens when the numerical description is better adapted to translate them into a sepa-
rable numerical space. On Caltech101, the best classification scores are almost invariably
obtained by the same categories, independent of the choice of visual construction algorithms
or parameters.

Figure 5.6 shows some examples of images belonging to “easy classes”, categories that
obtain good classification scores (on the upper row), and examples of “difficult classes”,
categories that obtain low scores (on the bottom row). The objects belonging to the “easy
classes” either appear in the same posture in all examples or they have a specific color
pattern that makes them easily recognisable. Most of the examples of airplanes and garfield
appear with the same shape, size and orientation. Other categories like yin_yang, soc-
cer_ball or dalmatian have a specific white-black alternation pattern, which makes them
easily recognizable even in the real world. By contrast, the objects depicted in picture of
“difficult classes”, like seahorse or butterfly appear in different colors, multiple postures and
sometimes hidden in the background.

We perform the same analysis on RandCaltech101. Table 5.1 presents a compar-
ative view of “easy classes” and “difficult classes” constructed for Caltech101 and
RandCaltech101, with the non-identical categories (between the two datasets) printed in
boldface. We observe the high degree of overlapping of the constructed sets: most of the
“easy classes” in Caltech101 also appear as “easily” recognizable for RandCaltech101. Sim-
ilarly, difficult classes on Caltech101 remain difficult on RandCaltech101. In Table 5.1, the
only category that changes difficulty is metronome, which is an “easy class” in Caltech101
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Table 5.1 — “Easy” classes and “difficult” classes in Caltech101 and RandCaltech101

“Easy” classes

“Difficult” classes

Caltech101 RandCaltech101 Caltech101 RandCaltech101
airplanes accordion beaver bass
car_side atrplanes buddha binocular

dalmatian car_side butterfly brontosaurus

dollar_bill dalmatian ceiling fan buddha

Faces easy dollar_bill cougar body butterfly

garfield Faces _easy crab crab
grand piano garfield crayfish crayfish

Leopards laptop cup crocodile

metronome Motorbikes dragonfly cup

Motorbikes panda ewer dragonfly

panda Snoopy ferry ewer
scissors soccer _ball flamingo flamingo
snoopy stop_sign flamingo _head  flamingo head
soccer _ball watch 1bis gerenuk
stop__sign windsor _ chair kangaroo helicopter
tick yin_ yang lamp ibis
watch lobster kangaroo
windsor _ chair mandolin lamp
yin_ yang mayfly lobster
minaret mandolin
pigeon mayfly
platypus metronome
pyramid minaret
rhino okapi
saxophone pigeon
schooner platypus
sea_ horse saxophone
stapler sea_ horse
strawberry stapler
wild _cat wrench
wrench

and a “difficult class” in RandCaltech101. This proves that the background randomization
performed in order to create RandCaltech101, while it makes the dataset more challenging
to classify as a whole, does not change the relative difficulty between categories. Cate-

gories that obtain good classification scores for Caltech101 also obtain good scores for

RandCaltech101.
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Figure 5.7 — A typical Fsqore evolution for the clustering-based classifier for m = 1000 on
Caltech101 (a) and on RandCaltech101 (b)

5.4.5 Quantitative evaluation

In this section, we show how the performances of the two classifiers vary, depending on
the visual vocabulary construction technique and the size of the visual vocabulary. We show
that the semantically-enriched representation clearly outperform the baseline approach,
mostly by increasing the score of “difficult” categories, and we discuss the overfitting. For all
the experiments presented in this subsection, the parameter « (introduced in Equation 5.1,
p. 108) of the filtering heuristic filt+model is set at one (« = 1) and its influence is studied
later in Section 5.4.7.

Aggregating the number of clusters in the clustering-based classifier When us-
ing the clustering-based classification algorithm, for a fixed visual vocabulary size, varying
the number of clusters nc leads to an F...e variation as shown in Figure 5.7. For all vi-
sual vocabulary techniques, the Fi.oe has a steep amelioration for lower values of nc and
stabilizes once nc reaches a value which is approximately two-three times bigger than the
number of categories. Starting from this point Fi.ore augments slowly and reaches its the-
oretical maximum when nc equals the number of individuals in the testing set. Due to the
fact that once stabilized, the score can be considered relatively constant, we compute the
mean Fi.,.. over all the values for nc. We obtain, for each visual vocabulary dimension, an
aggregated Fscore-

Obtained graphics Figures 5.8, 5.9 and 5.10 present the score evolution as a function
of the visual vocabulary size on, respectively, the datasets Caltech101, Caltech101-3 and
RandCaltech101. More precisely, Figures 5.8a, 5.9a and 5.10a show the evolution of the
aggregated Ficore, for the clustering-based classifier, and Figures 5.8b, 5.9b and 5.10b show
the variation of the TruePositive Rate, using the SVM classifier.

We make vary the vocabulary dimension between 100 and 5300 for Caltech101 and
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Figure 5.9 — Caltech101-3: Aggregated Fls.ore with clustering-based classifier (a) and
TruePosiviteRate for SVM (b) as functions of the vocabulary size

RandCaltech101 and between 10 and 5500 for the Caltech101-3, using a variable step.
For the three datasets, the horizontal axis is logarithmic. When observing the graphics for
every tuple (dataset, classifier, vocabulary construction technique), we observe the pattern of
a dome-like shape, corresponding to the three phases: under-fitting, maximum performance
and overfitting. We analyze more in detail the overfitting behavior for each vocabulary
construction technique in Section 5.4.6. Furthermore, the somehow low results obtained
by the clustering-based classifier can be explained by the fact that the clustering-based
classifier is a weak classifier (i.e., a classifier which perform only slightly better than a
random classifier), whereas the SVM is a strong classifier.
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Figure 5.10 — RandCaltech101: Aggregated Fscore With clustering-based classifier (a) and
TruePosiviteRate for SVM (b) as functions of the vocabulary size

Results interpretation When comparing the relative performances of the different tech-
niques presented in Figures 5.8, 5.9 and 5.10, we observe that our semantic-aware proposals
(model and filt+model) generally obtain better results than the generic (random-+km)
and random ones. The three regions of evolution are wider (they enter overfitting later)
for model and filt+model than for random and random-+t+km. On the other hand,
they also exit the under-fitting later. The generic random-+km obtains better results than
model and filt4model, for lower dimensions of visual vocabulary, on Caltech101 and
RandCaltech101. After exiting the under-fitting region, model and filt+model constantly
obtain better scores than random-+km, even when overfitted. Applying our filtering pro-
posal (filt+model) consistently provides a plus of performance (over model), but also
causes the visual vocabulary to enter overfitting earlier.

Table 5.2 — Average gain of performance relative to random.
model filt+model random-+km

.. Caltech101 13.96% 15,69% 4,36%
£ Caltech101-3 6.58% 7.36% 2.73%
© RandCaltech101 20,49% 26,27% 12,07%
— Caltech101 5,98% 12,02% 12,05%
= Caltech101-3 4,71% 5.24% 1,90%

RandCaltech101  5,89% 15,20% 13,21%

Table 5.2 gives the average gain of performance relative to random for the generic ran-
dom-+km and our semantic-aware proposals model and filt+model. For the clustering-
based classifier, we show the average relative Fs.ore gain, while for the SVM we show the
average relative TruePositive Rate gain. The best scores for each dataset are shown in
bold. In five out of six cases, the best scores are obtained by filt+model. model also
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Figure 5.11 — ROC curves: clustering-based classifier on Caltech101 (a) and

RandCaltech101 (b)

performs better than the generic random-+km in four out of the six cases. This shows
that a semantically-enriched representation outperforms the generic method random-+km
in a classification task. The maximum gain of performance is achieved on RandCaltech101,
where, by eliminating the background noise, our filtering algorithm considerably improves
the classification performances. When used with the SVM classifier on Caltech101 and
RandCaltech101, the model technique obtains average scores lower than random-km.
This is because model exits the under-fitting later than the other techniques, thus lowering
its average score (as shown in Figures 5.8b and 5.10b).

The ROC curves Similar conclusions regarding the overfitting and the relative perfor-
mances of the different visual vocabulary construction techniques can be drawn by plotting
the evolution using ROC [Fawcett 2006] curves. Figure 5.11 shows the ROC curves obtained
using the clustering-based classifier on Caltech101(Figure 5.11a) and on RandCaltech101
(Figure 5.11b). The visual vocabulary size varied between 100 and 5300. The sign * on the
graphic indicates the smallest size. The plots are zoomed to the relevant part. Overfitting is
clearly visible on the ROC curves. All the curves start by climbing towards the ideal point
(0,1) (first and second region on the graphics in Figures 5.8a and 5.10a). After reaching a
maximum, the ROC curves start descending towards the “worst” point (1,0), showing the
overfitting region. The curve corresponding to filt4+model clearly dominates all the other,
confirming the conclusions drawn from studying Table 5.2: the proposed approaches and
especially their combination in filt+model, achieve higher classification results.

Scores for ‘“easy” and “difficult” categories In Section 5.4.4, we have shown that
in both Caltech101 and RandCaltech101 some classes are easier to learn than others.
Regardless of the visual vocabulary construction technique, “easy classes” obtain higher
classification scores. Nonetheless, the construction particularities of each technique influence
the accuracy for difficult categories. In random, features are randomly picked to serve as
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visual words. Score differences between easy and difficult categories are pronounced and the
overall accuracy is low. The K-Means iterations in random-+km fit the visual vocabulary
to “easy” classes. Few categories achieve good scores, accentuating the gap between easy
and difficult categories. model and filt+model techniques achieve for “difficult” categories,
better scores than random and random-+km. The visual vocabulary is representative for
all categories and difficult categories like pyramid, minaret or stapler obtain higher scores
than those obtained with a baseline representation.

5.4.6 Overfitting

Evaluating using the clustering-based classifier In the clustering-based classifier, for
each pair (dataset, vocabulary construction technique), the Fyqope graphic shows a dome-
like shape with three regions. In the first one, corresponding to low vocabulary dimensions,
the visual vocabulary is under-fitted, there are not enough visual words to describe the
objects [Jiang et al. 2007]. Consequently, in the assign phase (phase 4 in “bag-of-features”
construction schema in Figure 5.2), features are assigned to the same visual word even if
they are not similar to each other. The second region represents the interval in which the
vocabulary obtains the best results. In the third region (corresponding to large sizes of the
visual vocabulary), performance degrades gradually. This is due to the fact that, in the
assign phase, relevant features are grouped densely, while noise is evenly distributed. Some
of the visual words regroup relevant features, while other regroup only the noise. As the
visual vocabulary dimension augments, more and more visual words will regroup only noise.
This generates a numerical space of high dimensionality, which is separable only on a few
dimension. This leads to degrading the overall separability of the numerical space and the
classification performances.

Evaluating using the SVM classifier The same conclusions apply for the SVM classi-
fier. Being a strong classifier, in Figures 5.8b (Caltech101) and 5.10b (RandCaltech101) the
dome-shape is less visible for the SVM. The overfitting appears for higher visual vocabulary
sizes than in the clustering-based classifier. For example, in Figure 5.10a, for random-+km,
clustering-based classifier starts to overfit at a vocabulary size of 300. When using the SVM,
in Figure 5.10b, overfitting starts only at 1300. The model technique does not appear to
enter overfitting in Figure 5.10b. But this is likely to happen for dimensions higher than
5300 (the maximum considered), because model is the last technique to enter overfitting
for the clustering-based classifier (as shown in Figure 5.10a).

The overfitting region is even more visible for Caltech101-3 (Figure 5.9). The visual
vocabulary sizes are considerably higher than for the other datasets, relative to the number
of classes. In Figure 5.9a performances of all visual vocabulary techniques descend sharply
for higher values of vocabulary size. The evaluation using the SVM classifier, in Figure 5.9b,
also clearly shows the dome-like shape.

5.4.7 Influence of parameter «

In Equation 5.1 (p. 108), we have defined 6, the filtering threshold, which is used to
decide if a feature has any similar features in the known positive set. The parameter « is
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Figure 5.12 — RandCaltech101: influence of parameter o on filt+model construction tech-
nique in the clustering-based task (a) and the SVM classifier (b)

used to fine-tune this threshold. If « is set too low, only the features that are very close
(in terms of Euclidean distance) are considered to be similar. Consequently, the filtering
is very strict, lowering the number of false positives, with the risk of an inflation of false
negatives. On the other hand, setting a too high allows distant features to be considered
as similar, causing a high number of false positives. In the previous experiments, we have
set the parameter o = 1. In this section, we study the influence of this parameter on the
performances obtained by the filt+model construction technique.

Figure 5.12 shows the evolution of the filt+model visual vocabulary construction tech-
nique as a function of visual vocabulary size, when using a € {0.8, 1, 1.25, 1.5}. The
horizontal axis is logarithmic. A value for o = 0.8 is too strict and the high number of false
negatives decreases classification performances. Augmenting o = 1 improves performances,
both when using the clustering-based classifier (Figure 5.12a) and when using the SVM
classifier (Figure 5.12b).

If « is set too high, performances decrease again. Too many features are considered
similar and less features get filtered. Performances approach those obtained when no filtering
is applied. @ = 1.25 and a = 1.5 show similar performances, since both levels are already
too high for filtering to be effective. For a > 1.25 filt+model is equivalent to the model
visual vocabulary construction technique. In Figure 5.12a, filt+model with o € {1.25, 1.5}
obtains, for high visual vocabulary sizes (m > 2000), better results than filt+model with
a € {0.8, 1}. This behaviour is similar with that already seen in Figure 5.10a, when model
enters overfitting later than filt+model and obtains better results for high vocabulary
sizes.

These initial experiments make us believe that « is dataset independent (a value of 1
provided best results on all three datasets), but further experiments on other datasets are
required in order to conclude this. Furthermore, a heuristic for automatically determining
its value is part of our future plans.
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5.5 Conclusions and future work

Conclusion In this chapter, we have focused on one of the core research challenges of
this thesis: leveraging semantics when dealing with complex data. More precisely,
we are interested in constructing a semantically-enriched image representation, by leverag-
ing additional information under the form of non-positional image labels. We argue that
enriching the semantics of the image representation would boost the performances of learn-
ing algorithms and we apply our proposed method to the learning task of content-based
image classification.

We use the additional information in the phase of visual vocabulary construction, when
building a “bag-of-features” image representation. We have proposed two novel approaches
for incorporating this semantic knowledge into the visual vocabulary creation. The first ap-
proach creates dedicated vocabularies for each label, while the second uses a pre-processing
phase for filtering visual features unlikely to be associated with a given object. We have
shown that the semantically-enriched image representation built using our proposals obtain
higher scores than a baseline BoF' representation, in the context of a task of content-based
image classification. This shows that incorporating semantic knowledge in the vocabulary
construction results in more descriptive visual words, especially on datasets where the back-
ground noise is significant. Even when overfitted, our proposals continue to outperform the
generic approach.

Passage to semantic scene classification and label co-occurrence Passing from
object categorization to scene classification raises the difficulty of object co-occurrence. For

P ENTS )

example, a picnic scene is defined by the simultaneous presence of “people”, “trees”, “grass’
and “food”. In terms of labels, this translates in label co-occurrence. In the approaches
proposed in Section 5.3, we assume that labels which denote objects appear independently.
The label correlation in complex scenes can be difficult when using the keypoint filtering
proposal together with the dedicated vocabulary proposal (the filt-+model vocabulary
construction technique). For the filtering, the known positive set contains images labeled
identically with the target image. Therefore, in the case of scene classification, the filtering is
applied for a set of labels. But the dedicated model is constructed for each label individually.
This inconsistency does not necessarily pose problems: filtering the keypoints for the labels
{t1,t2,t3} and constructing the vocabulary only for label ¢; does not produce erroneous
results, only noisy results.

Our approaches can be scaled to image classification by addressing the label co-
occurrence issue. For this purpose, we can adapt the label set to the image collection by
reconstructing labels to reduce, even eliminate, their co-occurrence. The feature” construc-
tion technique presented in Chapter 4 can be used to construct a new label set that properly
describes the image collection. The new labels are constructed as conjunctions of existing
labels and their negations, and would actually no longer be used to label objects, but scenes.
For example, if the labels “motorcycle” and “rider” appear often together, a new label “mo-
torcycle N\ rider” will be created to mark the scene identified by the presence of the two

7. Note that, in this context, the word feature is used in the sense defined in Chapter 4, synonym to
attribute. It should not be confused with the definition of feature in image processing literature, where it
has the sense of visual feature.
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Figure 5.13 — Streamlined schema showing how the contributions in this chapter can be
articulated with those in previous chapters.

objects.

Articulation with the previous work Conceptually, the work presented in this chapter
articulates with the work of previous chapters as shown in Figure 5.13. The work presented
in previous chapters is presented with faded colors. The joining point is, as in the case of the
previous chapters, the description of the data in a semantic-aware numeric description space.
Using the “bag-of-features” format, presented in this chapter, an image can be described
as a multidimensional vector of distributions over visual words. Furthermore, the work
presented in Chapter 4 has a direct application in label re-organizing for scene classification,
as described in the previous paragraph.

Most of the work presented in this chapter was submitted and is under review for the
International Journal of Artificial Intelligence Tools (IJAIT) [Rizoiu et al. 2013b].
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6.1 Learning task and motivations

This chapter presents our work concerning one of the most important and most abundant
types of complex data: text. More specifically, we focus on topics, which provide quick means
of summarizing the main “ideas” that emerge from a collection of textual documents. Topics
are usually defined as statistical distributions of probabilities over words and, therefore, they
are sometimes hard to interpret for human beings. The work detailed in this chapter, and
presented schematically in Figure 6.1, approaches the research challenge of leveraging
semantics when analyzing textual data.

This core research challenge is materialized into three learning tasks, associated with two
of the guidelines of this thesis: (i) extracting topics, (ii) labeling topics with humanly com-
prehensible labels (this task is related to the guideline of creating humanly comprehensible
outputs) and (ii) using semantic knowledge, under the form of concept hierarchies, in topic
evaluation (this task is related to the guideline of devising methods that embed semantics
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Figure 6.1 — Streamlined schema of our work with the textual dimension of the complex
data: extracting and evaluating topics.

in the learning process). For the first task, we propose a solution for topic extraction us-
ing overlapping text clustering, which allows a document to be assigned to multiple topics,
based on its semantics. For the second task, we assign to topics humanly comprehensible
labels by using an approach based of suffix arrays. For the last task, we propose to map
topics to subtrees of concepts associated to a knowledge base (here, WordNet [Miller 1995]),
by passing through words. The semantic cohesion of topics is evaluated based on the height
and depth of the corresponding topical subtrees in the concept hierarchy.

Practical and applied context Unlike the work presented in previous chapters, for
which the motivations were mainly research driven, the work presented in this chapter has
a very close connection to my applied work and the various research projects in which I
was involved along my thesis. While not being central to my research work (for which the
accent lies on semantic representation and the temporal dimension), the work concerning
text analysis through topic extraction and evaluation constantly doubled it.

Topic extraction is an important tool, especially in the context of applied projects, in
which textual analysis is involved. The topic extraction system described in Section 6.4.1
was implemented ! into the CKP 2 topic extraction platform, in the context of the project
CONVERSESSION, in which the creation of a start-up enterprise ® was involved (see Annex A).
The object of the project was Online Media Watching and the development of the resulted
prototype was later continued in the context of the projects EriC-ELICO, CRTT-ERIC and
IMAGIWEB. All these projects shared the need to retrieve text from the Internet, usually
from forum online discussions, and analyze it from various points of view (e.g., detect the
discussion topics, their emergence and evolution, differences of discourse etc.). The software
resulted from this continuous development is CommentWatcher, an open-source web-based
platform for analyzing online discussions on forums. CommentWatcher will be described in
detail in Chapter 7.

Multiple publications also resulted from the context of these projects and collaborations.
Some of the works concerning topic extraction were initially developed during my Masters
research internship. The further extensions were published in the proceedings of a French

1. The first beta version was implemented during my Master’s thesis.
2. Download here: http://eric.univ-1lyon2.fr/~arizoiu/files/CKP-src. jar
3. http://www.conversationnel.fr/
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national conference [Rizoiu et al. 2010|, while the application of topic extraction to ontology
learning was published in a book chapter |Rizoiu & Velcin 2011]. The topic evaluation
methodology was developed in collaboration with the Computer Science department of the
Polytechnic University of Bucharest, and more precisely, the PhD research internship of
Claudiu Cristian Musat at the ERIC laboratory. It was proposed in the proceedings of an
international conference [Musat et al. 2011b|. The application of outlier detection was also
published in the proceedings of an international conference [Musat et al. 2011a).

Research context and motivations When automatically analyzing text, difficulties
arise, similar to those raised by image data. The textual native digital representation (which
handles encoding at the level of character) usually captures little information about the se-
mantics of the text. We define the semantics of a text as the information that is transmitted
though the text, its intent. To correctly structure text, most languages possess syntactic
and morphological rules, which were employed by the Natural Language Processing research
community to develop automatic language processing systems. These systems usually pro-
vide good accuracy results, but they are costly to develop and maintain (due to the expert
supervised component), they are specialized on particular domains and often fail to capture
the subtleties of language (e.g., humor, irony, complex opinions). Other, more statistically-
oriented approaches, were proposed. The most widely used textual representation employed
by numeric systems, is the orderless “bag-of-words” representation, presented in detail in
Section 6.2. Among these numeric approaches, topic extraction systems emerged as a re-
sponse to the need to summarize large quantities of textual data and infer the main “ideas”
behind a collection of textual documents.

The work presented in this chapter deals with leveraging semantic information
into the tasks of topic extraction and topic evaluation. We also present some of
their applications, such as ontology learning and topic improvement. We propose a topic
extraction system that infers topics from text, by means of overlapping text clustering. We
address the problem of human comprehension of topics by assigning each cluster a “humanly-
comprehensible” name, made out of a frequent complete expression. As one of the guidelines
of our work, we consider crucial to generate humanly-comprehensible outputs, since topics
defined as distributions of probabilities over words are difficult to interpret for a human
being. For the topic evaluation task, the idea is to emulate the human judgment of topics.
To this end, we use a semantic resource, such as a concept hierarchy (e.g. WordNet). Each
topic is mapped to a subtree in the concept hierarchy and we redefine the specificity and
coverage of the subtree based on its height and depth in the concept hierarchy. We use this
measures to evaluate the cohesion of topics.

The remainder of this chapter is structured as follows. In Section 6.2, we present how raw
text can be translated into a numerical format using the “bag-of-words” representation. An
overview of research related to topic extraction, labeling and evaluation will be presented
in Section 6.3. In Section 6.4, we propose a topic extraction system and concept-based
topic evaluation system. We continue in Section 6.5 by presenting two applications of our
proposals: topic extraction for ontology learning and the improvement of topic, based on
concepts, by removing the topic’s spurious words. We end with Section 6.6, in which we
draw the conclusions and plan some future work concerning the textual dimension of the
complex data.
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6.2 Transforming text into numerical format

One of the simplest text numerical representations is the “bag-of-words” representa-
tion [Harris 1954, Harris 1968| (BoW). This representation is extensively used in Natural
Language Processing and Information Retrieval tasks. Lately, this representation has also
been used in Image Processing, as shown in Chapter 5, under the form of “bag-of-features”
representation. In the BoW model, text is represented as an unordered collection of words,
disregarding grammar and even word order. Each word is assigned a score, calculated ac-
cording to a term weighting scheme.

, = (W ranslationto |
I — Preprocessing —» [| — numeric I
-

representation

Documents Preprocessed
(plain text) documents

Data in the Numeric
Vectorial Space

Figure 6.2 — Schema of transforming texts to a numerical representation.

Figure 6.2 shows the typical treatment chain that allows transforming textual data into
the tabular numeric format. In the Preprocessing phase, each document is preprocessed,
as shown in Section 6.2.1. This usually includes (i) eliminating common words that do
not bring any information about the thematic of the text and (ii) stemming or lemma-
tizing inflected words, in order to increase their descriptive value. In the Translation to
numeric representation phase, the preprocessed documents are translated into the a nu-
meric vectorial description space, as shown in Section 6.2.2; using one of the term weighting
schemes (e.g., term frequency, TFXIDF etc.). At the end of this phase, the textual collec-
tion can be represented as a term/document matrix. Each numeric feature (the columns)
corresponds to a word in the vocabulary and each vector (the rows) defined in this multi-
dimensional space corresponds to a textual document. We present in further detail each of
these two phases over the next two subsections.

6.2.1 Preprocessing

The purpose of preprocessing is to augment the descriptive power of the terms and
limit the size of the vocabulary. There are typically two problems that arise when dealing
with natural language text using a BoW approach: inflected/derived words and stopwords.
Therefore, the preprocessing is usually composed of two elements: stemming/lemmatization
and stopwords removal.

Stemming/Lemmatization Many languages apply inflections on words to express pos-
session, verb tenses etc. For example, in English, the verb “to walk” may appear as “walk”,
“walked”, “walks”, “walking”. The base form (i.e., “walk”), the infinitive for verbs, masculine
singular form for nouns, is called the lemma for the word. While crucial for the human com-
prehension of the text, inflections can usually be ignored for many applications. When using
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the BoW representation, having different forms for the same base form leads to creating
multiple bags for a single word and incorrectly evaluating the word’s score in the document.

Stemming is the process for reducing inflected words to their stem or root form, by
removing inflections, prefixes and /or suffixes. The stem of a word is not necessarily identical
to the word’s lemma and it may not even be a valid word or the morphological root of the
word. It is sufficient that all inflected variants of a words map to the same stem. Stemming
is dependent on language, but algorithms have been developed for the majority of widely
used languages. For English, the stemmer mostly used is Porter’s stemmer [Porter 1980]
and various initiatives (e.g., the CLEF Project®) have proposed solutions for European
languages.

Lemmatization refers to determining the lemma for a given word. This process usually
involves complex tasks such as understanding context and determining the part of speech of
a word in a sentence. Lemmatization is closely related to stemming. The difference is that a
stemmer operates on a single word without knowledge of the context, and therefore cannot
discriminate between words which have different meanings depending on part of speech
(e.g., “meeting” as a noun in “during our last meeting” or as a verb in “we are meeting again
tomorrow”). Stemmers are typically easier to implement and run faster, while lemmatization
can in principle select the appropriate lemma depending on the context.

Stopwords removal Stopwords are commonly used words, such as articles, prepositions
etc., that do not present any descriptive value, as they are not associated to a certain the-
matic. When using a BoW representation, they increase the size of the dictionary and bias
the values of certain term weighting schemes (such as Term Frequency). Stopwords are typ-
ically removed using stopword lists, which can contain short function words (e.g., the, is,
at, which, on etc.), but any words judged unnecessary can also be included. Whatsoever,
stopwords are important for the human reader (as shown in Section 6.4.1) and their removal
might render the results humanly-incomprehensible. Therefore, when results are shown to
the reader (e.g., cluster labels, search results), they typically include them. Our work con-
cerning the topic labeling, presented in Section 6.4.1, uses complete expressions that also
include stopwords.

6.2.2 Text numeric representation

Numerous textual representations exist in the Information Retrieval domain [Sing-
hal 2001]. The Boolean Model compares True/False query statements with the word set
that describes a document. Such a system has the shortcoming that there is no inherent
notion of document ranking. The Probabilistic Model |[Maron & Kuhns 1960] is based on
the general principle that documents in a collection should be ranked by decreasing proba-
bility of their relevance to a query. In the Inference Network Model |Turtle & Croft 1989,
document retrieval is modeled as an inference process in an inference network. A docu-
ment instantiates a term with a certain strength, and the credit from multiple terms is
accumulated given a query to compute the equivalent of a numeric score for the document.

The Vector Space Model [Salton et al. 1975] is the representation most widely used in
modern text clustering algorithms and Information Retrieval tasks. Just as the BoW rep-

4. http://www.clef-campaign.org/
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resentation, the Vector Space Model does not conserve the order of words or their semantic
relations. Each document is represented as a multidimensional vector in a space having as
many dimension as there are terms® in the considered dictionary and where each dimension
is associated to a term. The score on each dimension is directly proportional to the strength
of the relationship between the considered word and the document. The Vector Space Model
allows to define a distance between textual documents, which can be interpreted as the sim-
ilarity between documents. It is usually calculated using the cosine distance of the two
multidimensional vectors:

B Z‘kvzll dik X djp
y y
VI s M a2,

where d; and d; are two documents in the document collection D, V is the word vocabulary

\di — dj||eos = 1 — cos(dy, dj) =1 (6.1)

and d; 1, is the score of word wy € V associated to the document d;.

There are numerous methods for measuring the scores for words, also known as term
weighting schemes [Salton & Buckley 1988|, out of which we single out (i) the pres-
ence/absence scheme, (ii) the term frequency scheme, (iii) the inverse document frequency
scheme and (iv) the TFxIDF scheme, detailed here after.

1. Presence/Absence is also known as binary weighting and it is the simplest way
to measure the belonging of a word to a document. Its formula is:

1, if the word wy, is found in document d;
di k= pa(di, wi) = :
0, otherwise
This weighting scheme can only show if a word is related to a document, but it does
not measure the strength of the relationship [Dumais et al. 1998].
2. Term Frequency is also known as term count. It is defined as the number of times a
given word appears in a document. To avoid favoring longer documents, normalization
is usually used:

n
dip = tf(d;, wy) = e —

where n; ;, is the number of occurrences of the word wy, in the document d; and the
denominator is the total number of words in the document d;.

3. Inverse Document Frequency is a measure of the general importance of a word
in the whole corpus. It favors rare words, giving a low score to words that appear in
many documents. IDF is defined as:

D|

[{d|wy €d,deD}|

where D is the collection of textual documents and |{d|wy € d, d € D} | is the total

number of documents in which the word wy appears. In practice, IDF is never used

idf (wg) = log

alone, as it lacks the power to quantify the relationship between a word and a docu-
ment and it favors very rare words, which often prove to be typographic errors. IDF
is usually used in conjunction with TF in the TFXIDF weighting scheme.

5. A term is a word that has a certain semantic (i.e., most often a term refers to objects, ideas, events,
states of affair etc.). All terms are words, but only some words are terms.
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4. TFXIDF [Jones 1972] is the most used scheme in Information Retrieval. It is the
product of Term Frequency and Inverse Document Frequency:

di ) = tfxidf (di, wg) = tf(di, wi) x idf (wi)

TFxIDF aims at balancing local and global occurrences of a word. It assigns a high
score to a word wy that appears multiple times in a document d; (high Term Fre-
quency), but which is scarce in the rest of the collection (high inverse document
frequency).

Other term weighting schemes for the BoW representation exist, often variations of the
classical schemes. Okapi BM25 [Robertson et al. 1995] is a bag-of-words retrieval function
that ranks a set of documents based on the query terms appearing in each document. It is
based on the probabilistic retrieval framework. Other weighting schemes search to include
additional external information into the scoring function. For example [Karkali et al. 2012]
propose tDF (temporal Document Frequency), which is a variation of the BM25 measure.
It includes temporal information in order to “keep topics fresh”, by adding a decay factor
under the form of a temporal penalization function.

6.3 An overview on Topic Extraction

It is generally accepted that a topic represents an “idea” that emerges from a collection
of textual documents. But there is no widely accepted formal topic definition. Through-
out the literature, a topic is considered to be (i) a cluster of documents that share a
thematic [Cleuziou 2008|, (ii) a distribution of probabilities over words and over docu-
ments |Blei et al. 2003] or (iii) an abstraction of the regrouped texts that needs a linguistic
materialization: a word, a phrase or a sentence that summarizes the idea emerging from the
texts [Osinski 2003]. Plenty of applications can benefit greatly from topic inference from
text, including information retrieval systems, database summarization, ontology learning,
document clustering and querying large document collections.

We present an overview of topic extraction, focusing on flat clustering techniques,
which create a partition of documents with a single level. These algorithms divide a col-
lection of textual documents into groups, so that documents inside a group are similar in
terms of their topic (politics, economics, social etc.) and dissimilar with documents in other
groups. For each cluster, K-Means-based clustering algorithms present a centroid, which is
an abstraction of the cluster and which summarizes the common part of the documents in
the cluster.

The centroid (a multidimensional vector or a distribution of probabilities) is not a real
document and rarely makes any sense to a human. Therefore, it is convenient to choose a
comprehensible name for it. There are a number of ways of labeling a topic [Roche 2004]:
(i) choosing an arbitrary number of high rated words, (ii) selecting a document as repre-
sentative, (iii) assigning a meaningful, human-readable expression or phrase etc. The word
property of polysemy is important when labeling topics. The same word can have different
meanings, depending on the context. For example, the word “mining” has one meaning in
the expression “coal mining” and another in “data mining”.
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Other topic extraction methods exist, most notably those issued from computational
linguistics [Ferret 2006] or graph-based methods [Ng et al. 2002]. In the following sections
we concentrate only on statistical-based methods: we present text clustering based methods
(in Section 6.3.1), probabilistic topic models (in Section 6.3.2). In Section 6.3.3, we address
the issue of topic labeling, and we finish in Section 6.3.4 with a short overview of methods
which deal with topic evaluation and improvement.

6.3.1 Text Clustering

We choose to divide text clustering algorithms into categories based on their ability to
create overlapping groups. Other classifications are possible, some authors [Dermouche
et al. 2013| divide them into families of methods: (i) distance-based methods, (ii) matrix
factorization-based methods and (iii) probabilistic methods. Some of the solutions presented
below were designed specifically for text mining (like LDA), others are general purpose
clustering algorithms. The latter can be used for text clustering by translating textual
documents into the Vector Space Model (described in section 6.2.2).

Crisp solutions

Crisp clustering algorithms regroup a collection of documents into a partition of dis-
jointed classess. K-Means [MacQueen 1967] is one of the most well-known crisp clustering
algorithms. The algorithm iteratively optimizes an objective criterion, typically the distor-
tion function. In the case of text mining and information retrieval, the cosine distance is
used to calculate the similarity between texts. Bisecting K-Means [Steinbach et al. 2000]
is a hierarchical variant of K-Means, which has been emphasized as more accurate than
K-Means for text clustering. It is a top-down algorithm that partitions, at each step, one
cluster of documents into two crisp sub-clusters. At the first iteration, the collection is di-
vided into two subsets according to multiple restarting 2-means. At the successive iterations,
one subset is split into two and n + 1 text clusters are obtained from n initial clusters. The
process is iterated until a stopping criterion is satisfied (e.g., a fixed number of clusters). The
final output of Bisecting K-Means can be seen as a truncated dendrogram. Hierarchical
agglomerative clustering (HAC) [Jain & Dubes 1988] is a hierarchical clustering tech-
nique used more frequently in Information Retrieval. It constructs the hierarchy bottom-up
and consists in merging at each step pairs of clusters. A single-level crisp partition can be
obtained by cutting the dendogram at certain level, chosen using a given heuristic (e.g.,
biggest gap between levels). Whatsoever, hierarchical clustering methods are ill adapted to
treat the great volumes of data encountered in text mining.

Overlapping solutions

In overlapping clustering, documents are authorized to simultaneously be part of mul-
tiple clusters. The result is no longer a strict partition of the document collection, since
groups have non-empty intersections. Considering that longer texts have the tendency of
approaching multiple subjects, it is only natural to allow them to be part of each of the
corresponding topics. (e.g., a text that talks about the “economical outcomes of a political
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decision” should be part of both the “politics” and the “economics” group). Therefore, an
overlapping technique seems more appropriate for text clustering [Cleuziou et al. 2004].

Overlapping K-Means (OKM) [Cleuziou 2008| is an extension of K-Means. It
shares the same general outline, trying to iteratively minimize an objective function. In
OKM, a document can be assigned to multiple clusters. Whereas in K-Means, each document
is assigned to the closest centroid, OKM assigns documents to the closest Gravity Center
of multiple centroids. The objective function minimized by OKM is the distortion in the
dataset:

distorsion (D) = : ><1]D] Z \|d; — dy||? (6.2)
d;,€D

where ||®]|| is the considered distance between documents (usually the cosine distance ||®||cos
defined in Equation 6.1), k is the number of clusters, D is the document collection and d;
is the image of document d; (d; is the gravity center of clusters to which d; is assigned).
wOKM [Cleuziou 2009] is a weighted version of OKM, which uses weights internally to limit
the overlapping of clusters. wOKM can be seen as a special case of subspace clustering [Par-
sons et al. 2004].

Fuzzy solutions

In fuzzy clustering, each document belongs with a certain degree (or probability) to all
clusters, rather than belonging completely to just one cluster (in crisp clustering) or several
clusters (in overlapping clustering). Each document d is associated with the cluster p; with
the degree u(d, ;). A document d; situated at the edge of a cluster y; is associated with
the cluster in a lower degree than a central document d;:

w(ds, ) < uw(dj, ), Vd;, d; € D and ||d; — pu||* < ||d;j — wl|?

Fuzzy logic clustering algorithms can be adapted to output a crisp partition by selecting
for each document d, the cluster with the highest degree of belonging:

chosen cluster(d) = argmax (u(d, 1))
1=1,2,...k

and to output an overlapping partition by choosing a threshold 6 and considering only
clusters for which the degree of belonging is greater than the threshold:

chosen clusters(d) = {y |u(d, ) >6,1=1,2,....k}

Fuzzy K-Means [Dunn 1973| is an adaptation of the K-Means algorithm to the fuzzy
logic. Fuzzy K-Means differs from the original version in several aspects: the way the ob-
jective function is calculated, the centroid update phase and the output of the algorithm.
Every pair (document, cluster) contributes to the objective function proportionally to the
membership degree of the documents in the cluster. Similarly, in the centroid update phase,
all documents contribute accordingly to their weights. The output of the algorithm is, for
each document, a vector with the probabilities of membership to clusters.

Latent Semantic Indexing (LSI) [Berry et al. 1995] is a statistical topic discovery al-
gorithm using Singular Value Decomposition (SVD) as the underlying mathematical ground.
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The algorithm decomposes the term/document matrix A in a product of three matrices:
A =USVT. U and V are orthogonal matrices, containing the left and the right singular
vectors of A. S is a diagonal matrix with the singular values of A ordered decreasingly.

LSI allows defining heuristics for reducing dimensionality and determining the number
of topics. Ag, the k-approximation of A (A = UkSkaT) is obtained by selecting the k
highest ranking singular values from S, alongside with the corresponding columns in U and
the lines in V. There exist heuristic for determining k, for example, (i) to order decreas-
ingly the singular values of A and cut at the highest difference between two consecutive
values [Osinski 2003] or (ii) the scree test [Cattell 1966]. The columns in U corresponding
to the k highest singular values create an orthogonal basis for the document space. Any
multidimensional vector in this space can be expressed as a weighted sum of the elements
of the base:

di = a1py + agpz + ...+ gk,
i€l,2,....|D] andl € 1,2,...,k

Considering the base elements y; as the centroids of clusters, documents are described in a
fuzzy logic: the document d; has the probability a; of belonging to the cluster y;. LSI has the
inconvenience that it can produce negative singular values, which can pose interpretability
problems [Lee & Seung 1999]. Non-negative Matrix Factorization [Lee & Seung 1999] (NMF)
deals with this problem by finding a non-unique factorization of the non-negative matrix V,
so that V' = W H. NMF-based methods have been shows efficient in topic extraction [Seung
& Lee 2001,Xu et al. 2003].

6.3.2 Topic Models

Many concurrent solutions exist for topic extraction, some of which that fall in the
category of text clustering have been presented in the Section 6.3.1. However, in recent
years, generative methods, and specifically topic models, imposed as the state-of-the-art.
Starting from the assumption that observable data can be randomly generated following an
a priori determined set of rules, topic models seek to detect the abstract “topics” that occur
in a collection of documents.

Latent Dirichlet Allocation (LDA) [Blei et al. 2003] is probably the most well-known
probabilistic generative model designed to extract topics from text corpora. It considers
documents as “bags-of-words” and models each word in a document as a sample from a
mixture model. Each component of the mixture can be seen as a “topic”. Each word is
generated from a single topic, but different words in a document are generally generated
from different topics. Each document is represented as a list of mixing proportions of these
mixture components and thereby reduced to a probability distribution on a fixed set of
topics.

LDA is highly related to probabilistic Latent Semantic Analysis [Hofmann 1999]
(pLSA), except that in LDA the topic distribution is assumed to have a Dirichlet prior. This
point is highly important because it permits to go beyond the often-criticized shortcoming
of PLSA, namely that it is not a proper generative model for new documents and overfitting.
More precisely, LDA is based on the hierarchical generative process illustrated in Figure 6.3.
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Figure 6.3 — Schema of Latent Dirichlet Allocation.

The hyperparameters a and (8 are the basis of two Dirichlet distributions. The first
Dirichlet distribution deals with the generation of the topic mixture for each of the |D|
documents. The second Dirichlet distribution regards the generation of the word mixture for
each of the k topics. Each topic is then a distribution over the |W| words of the vocabulary.
The generative process is the following: for each word wg; of the corpus, draw a topic u
depending on the mixture 6 associated to the document d and then draw a word from the
topic pu.

Note that words without special relevance, like articles and prepositions, will have
roughly even probability between classes (or they can be placed into a separate category). As
each document is a mixture of different topics, in the clustering process, the same document
can be placed into more than one group, though resulting in a (kind of ) Overlapping Clus-
tering Process. Learning the parameters 6 and p, and sometimes the hyper-parameters a
and 3, is rather difficult because the posterior p(0, u/D, «, B, k) cannot be fully calculated,
because of an infinite sum in the denominator. Therefore various approximation algorithms
must be used, such as variational EM, Monte-Carlo Markov processes, etc.

This probabilistic approach presents advantages and disadvantages:

— The theoretical framework is well-known in bayesian statistics and well-grounded. It

has led to many fruitful researches (see below).

— It is designed to make inferences on new documents: what are the associated top-
ics and with what proportions? What part of the document is associated to which
topic? Depending on the likelihood p(d/©), does a new document describe an original
mixture of topics or a new, never seen before topic?

— LDA is a complex mathematical model, which considers each document as a com-
bination of possibly many topics. While this may be interesting for describing the
documents, in the case of clustering, it could lead to a situation where each document
belongs, more or less, to many clusters (similar to a fuzzy approach). An issue is there-
fore to be able to choose a finite (and hopefully short) list of topics to be associated
to the document, beyond setting a simple threshold parameter.

— This method does not present a center for each cluster, but a distribution of the
topics over the terms. This could make it difficult to associate a readable name to the
cluster. Note that recent works relative to LDA are seeking to find useful names using
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n-grams [Wang et al. 2007].

— As in the other presented methods, this probabilistic approach does not solve the clas-
sical problem of finding the global optimum and choosing the number k of topics. For
the latter, some methods are proposed inspired by the works in model selection [Ro-
driguez 2005].

Numerous works have followed the hierarchical generative model of LDA to deal with var-
ious related issues: extracting topic trees (hLDA) [Blei et al. 2004], inducing a correlation
structure between topics [Blei & Lafferty 2006a], modeling topics through time [Blei &
Lafferty 2006b, Wang et al. 2008], finding n-grams instead of single words to describe top-
ics [Wang et al. 2007], social networks [Chang et al. 2009b], opinion mining [Mei et al. 2007a]
etc.

6.3.3 Topic Labeling

Distributions of probabilities and multidimensional vectors are hardly comprehensible
for a human reader. As shown in Section 6.3, there is no unanimously accepted method for
presenting topics. Most authors limit themselves to showing the top scoring words for each
topic. While a list of words already gives a main idea of a topic, it is more interesting to
present the human reader a phrase to summarize the idea behind the group of documents.

To provide better topic descriptions, systems like Topical N-Grams [Wang et al. 2007]
embed “spatial” connections between words in the topical learning process. Therefore, topic
names are inferred simultaneously with the topics. Topical N-Grams extracts topics as distri-
bution over n-grams (sequences of multiple words which appear often together). Presenting
highly scored expressions is more comprehensible than a list of words [Wang et al. 2007].

Most topic labeling algorithms assign topic names in a post-processing phase of the
topic extraction. This type of approach is a two phase process: (i) the name candidates are
extracted from the text corpus and (ii) the meaningfulness of each candidate is calculated
and the highest scoring one is chosen. [Mei et al. 2007b] address the labeling task as an opti-
mization problem that aims at minimizing the Kullback-Leibler (KL) divergence |[Kullback
& Leibler 1951] between word distributions. In this case, the two compared distributions
are the topic itself and the name candidate’s word distribution. The obtained distance is an
indicator of the name candidate’s meaningfulness to the analyzed topic. In |Osinski 2003],
frequent keyphrases are extracted from web search snippets and assigned to topics, by using
the cosine distance to calculate their similarity.

Phrase learning All algorithms that label topics in a post-processing phase share the
need for relevant and unambiguous phrases, which later serve as name candidates and are
used to synthesize the idea of the group of documents associated to the topic. Compre-
hensible topic names need to be complete phrases: they take into account the property of
polysemy and they are humanly readable. As shown in Section 6.3, words can have different
meanings, depending on the context. This is one of the reasons why single words rarely
make good topic names. Name candidates should be expressions which are precise enough
to specify the meaning of words (e.g., “data mining” compared to the single word “mining”).
Humanly readable topic names contain words in their original textual form (not lemmatized,
nor stemmed) and all the needed prepositions and articles (e.g., “the Ministry of Internal
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Affairs”). Name candidates are also called keyphrases, sequences of one or multiple words
that are considered highly relevant as a whole.

Based on the learning paradigm, keyphase learning algorithms can be divided into con-
structive algorithms and extractive algorithms [Hammouda et al. 2005|. Construct-
ing keyphrases is usually a supervised learning task, often regarded as a more intelligent
way of summarizing the text. These approaches make use of the external knowledge, under
the form of expert validation of the extracted phrases. The obtained results are usually
less noisy, but involving human supervisor makes the extraction process slow, expensive
and biased towards the specific field (e.g., specialized to microbiology vocabulary). These
approaches do not scale to large datasets of general purpose texts. Examples of such sys-
tems follow: ESATEC |Biskri et al. 2004], EXIT |[Roche 2004], XTRACT [Smadja 1991].
Extracting keyphrases is an unsupervised learning task, in which candidate names are
discovered using predefined patterns. This kind of approaches scale well to large datasets,
but they have the drawback of almost exponential quantity of extracted keyphrases and
a noisy output. Examples of such systems follow: CorePhrase [Hammouda et al. 2005],
Armil |Geraci et al. 2006], SuffizrTree Extraction |Osinski 2003].

According to the employed method, keyphrase learning algorithms can be divided into:
linguistic approaches, statistical approaches and hybrid approaches [Roche 2004,
Buitelaar et al. 2005, Cimiano et al. 2006].

Linguistic approaches

Linguistic approaches are issued from the domains of Terminology and Natural Lan-
guage Processing. They employ linguistic processing, like phrase analysis or dependency
structure analysis. A part of speech tagger is usually employed for the morphological char-
acterization of words (e.g., determine (i) if the word is a noun, adjective, verb or adverb,
and (ii) its number, person, mode, time etc.). Words are further characterized with the
semantic information and their lemma (see Section 6.2.1). From the texts enriched with
syntactic and morphological information, keyphrases are extracted, most often using pre-
defined patterns. TERMINO [Lauriston 1994| uses patterns like <Head> <Prepositional
Group> <Adjectival Group> to discover keyphrases. LEXTER [Bourigault 1992| uses the
morphological information to extract from the text nominal groups and then searches for
dis-ambiguous maximal nominal groups. INTEX [Silberztein 1994, Ibekwe-SanJuan & San-
Juan 2004] allows simple definition of morpho-syntactic rules to infer keyphrases. Such rules
are (i) a keyphrase can contain an adverb, one or multiple adjectives, a single preposition
and at least a noun, (ii) phrases made of preposition and determinant are excluded etc. The
keyphrases extracted by INTEX can be further enriched [Ibekwe-SanJuan & SanJuan 2004]
by adding variant phrases, using the FASTR system [Jacquemin 1999|. Variant phrases
are variations of initial phrases by altering the word order or inserting words (e.g., “online
customer support” is a variant phrase of “online support”).

Keyphrase extraction methods based on linguistic approaches obtain less noisy output
than purely statistical methods, but they are vulnerable to multilingual corpora, neolo-
gisms and they have the tendency to adapt to stereotypical texts (texts from a specified
narrow field) [Biskri et al. 2004]. Furthermore, the morphological and syntactic analyzers
they employ, as well as their predefined rules are sensible to the text quality. This makes
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linguistic-based approached scale badly to internet-originated text, which usually written
in an informal style (this is especially true for text on social networks and micro-blogging).
Furthermore, they are costly to develop and maintain, due to the expert supervised task of
defining patters, updating them etc.

Statistical approaches

Statistical keyphrase extraction algorithms are based on information retrieval techniques
for term indexing [Salton & Buckley 1988]. The underlying assumption is that the sense
of a word (see the property of polysemy) is given by its context (i.e. other words which
have a strong relationship with the given word). Statistical measures are employed to de-
tect keyphrases of strongly related words. A widely used measure which quantifies the
dependency between two words in the binary collocation (also called bigram) is the Mutual
Information, given by the formula:

p(wi, w;) )

miwi,w)) = p(wi, w;) x log <p<w>p<w>

where p(w;) and p(w;) are the probabilities with which the words w; and, respectively, w;
appear in the text, while p(w;,w;) represents the probability of the words w; and w; ap-
pearing together in a window of a specified length. In [Anaya-Sanchez et al. 2008|, bigrams
are detected using a window of dimension 11 (5 words before -+ considered word -+ 5 words
after). Other tools (e.g., EXIT [Roche 2004], ESATEC |Biskri et al. 2004|) rely on con-
structing n-grams, by iteratively combining bigrams or increasing the length of a previously
discovered (n-1)gram. Longer collocations are obtained, with higher Mutual Information
score.

Many other statistical measures have been proposed to calculate the strength of the
relationship between two words. In [Anaya-Sanchez et al. 2008| a modified entropy function
is used to determine frequent bigrams from a set of frequent terms. LocalMaxs [da Silva
et al. 1999, Dias et al. 2000] uses the Symmetric Conditional Probability measure to extract
continuous multiple word units and the Mutual Ezpectation measure for extracting non-
continuous multiple word units. Some works study the impact of some of the most used
measures, judging their ability to identify lexically associated bigrams. The compared mea-
sures are: t-score, Pearson’s x-square test, log-likelihood ratio, pointwise mutual information
and mutual dependency [Thanopoulos et al. 2002].

There are other approaches that do not rely on bigram detection and n-gram construc-
tion for keyphrase extraction. In CorePhrase [Hammouda et al. 2005] keyphrases are con-
sidered to naturally lie at the intersection of textual documents in a cluster. The algorithm
compares every pair of documents to extract matching phrases. It employs a document
phrase indexing graph structure, the Document Index Graph. It constructs a cumulative
graph, representing currently processed documents. When introducing a new document, its
associated subgraph is matched against the existing cumulative graph to extract the match-
ing phrases between the new document and all previous documents. The graph maintains a
complete phrase structure identifying the containing document and phrase location, so cy-
cles can be uniquely identified. Simultaneously, it calculates some predefined phrase features
that are used for later ranking. Suffix Array-based techniques |Osinski et al. 2004, Osinski
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& Weiss 2004] can also used to discover keyphrases. Incomplete phrases (e.g., “President
Barack” instead of “President Barack Obama”), which are often meaningless, can be avoided
by using the notion of phrase completeness. A phrase is complete if and only if all of its
components appear together in all occurrences of the phrase. In the previous example, if the
phrase “President Barack” is followed in all of its occurrences by the term “Obama”; then it
is not a complete phrase. Starting from this definition, right and left completeness can be
defined (the example above is left complete, but not right complete). Using a Suffix Array
data structure [Manber & Myers 1993|, the complete phrases can be detected and the ones
occurring with a minimum frequency populate the topic label candidate set. More details
about a suffix array-based algorithm for keyphrase extraction can be found in Section 6.4.1.

Unlike linguistic approaches, statistical keyphrase extraction systems produce noisy re-
sults [Biskri et al. 2004]. While extracted name candidates pass the frequency threshold
and get good statistical scores, many of them hardly capture any semantic meaning. Such
are the phrases which (i) are made out of common words, like articles, prepositions, certain
verbs etc. (e.g., “he responded that”, “the biggest part of the”) and (ii) bring no information
to the topic. The advantage of statistical methods is that they scale well to big datasets
and they are virtually language independent.

Hybrid approaches

The advantages and inconveniences of linguistic and statistical approaches are com-
plementary. Hybrid approaches aim at picking the best of the two worlds: scaling well to
big datasets and producing less noisy outputs. Hybrid systems usually add linguistic infor-
mation to an essentially statistical system or add statistical information to an essentially
linguistic system. For example, predefined keyphrase formats (e.g., <Subject> <Verb> or
<Verb> <Adverb>) can be used to filter the output of statistical methods.

[Roche 2004| presents a review of hybrid approaches. For example, XTRACT
[Smadja 1991] uses morphological and syntactic taggers as a final phase to filter out the
noise from the name candidate set resulted using statistical extraction. In the first phase,
bigrams are extracted from a grammatically tagged corpus, using an 11-word window. The
second phase consists in extracting longer frequent phrases, called “rigid noun phrases”.
The third phase is the linguistic phase. It consists in using statistic filtering based on the
bigram’s frequency to associate a syntactic etiquette to extracted bigrams (e.g., <Noun>-
<Verb>, <Adjective>-<Noun>). Longer phrases can be constructed based on the bigrams
and filtered using predefined syntactic rules.

6.3.4 Topic Evaluation and Improvement

Topic extraction is an unsupervised machine learning task, meaning that no ground
truth exists to evaluate the results. This is a classical problem in clustering. Traditional
unsupervised tasks are usually evaluated using adapted statistical measures, which quantify
the fitness of the obtained results over a particular criterion. Evaluating topics adds another
level of difficulty, since constructed topic must not only regroup similar documents, but a
semantically coherent idea must also emerge from the topic. For example, topic extraction
algorithms based on text clustering can be evaluated using any traditional internal clustering
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measure [Halkidi et al. 2001] (e.g., cluster variance). But applying such measures does not
give any semantic information about the fitness of topics. To take into account the semantic
dimension, some authors [Cleuziou 2008, Rizoiu et al. 2010| use semantically annotated
datasets for evaluating topics. Each text in the dataset is labeled using one or multiple
given tags (e.g., economics, oil). Techniques issued from the supervised learning literature
are used: topics are trained on a learning set and measures like precision and recall are
calculated on a previously unseen test set. We present such an evaluation technique in
Section 6.4.1.

Generative topic modeling is today’s de facto state of the art in topic extraction. Tra-
ditionally, these approaches have been evaluated qualitatively and quantitatively. From the
qualitative point of view, a sample of topics is usually exhibited in order to convince the
reader. Each exhibited topic is a short list of the first terms, ordered decreasingly from a
probability perspective. Most of the times, a topic label is manually assigned by the authors.
A topic is considered to be good if most of its most probable words are semantically similar.
Quantitatively, statistical measures, such as the perplexity [Wallach et al. 2009], are em-
ployed to assess the ability of extracted topics to generalize on unseen data (either through
a train set/test set approach or through cross-validation). Even though topic models show
good predictive power on new text, their weak point is their underlying assumption is that
the latent space is semantically meaningful. In [Chang et al. 2009al, an extensive quanti-
tative and qualitative evaluation of the interpretability of the latent space is performed. It
is shown that the human judgment does not always coincide with the statistical evaluation
measures. Highly scoring topics are sometimes not humanly comprehensible, showing that
statistic measures do not always achieve to capture the semantics of the dataset. [Newman
et al. 2010] addresses this lack of semantic comprehension by using external semantic re-
sources (e.g., Wikipedia, Google) for the evaluation task and uses the topic coherence as an
evaluation metric. Similarly, concept hierarchies (such as WordNet [Miller 1995]) are used for
topic evaluation purposes. In [Musat et al. 2011b, Musat 2011|, we propose a topic-concept
mapping, in which each topic is assigned a topical subtree in the concept hierarchy. The
measures of specificity and coverage are defined and used to evaluate topics. This method
will be presented in detail in Section 6.4.2.

Many approaches have been proposed in recent years for improving topic extraction or
for adapting it to specific applications. Most often, the improvement techniques deal with
embedding or leveraging external semantic information. In [Musat et al. 2011a,Musat 2011],
we propose a technique for removing topic outliers (i.e., words unrelated to a certain topic).
It uses the same topic-concept mapping presented earlier and it will be further detailed in
Section 6.5.1. sSLDA [Blei & McAuliffe 2008] introduces the semantic information under
the form of supervision of the topic modeling process. Other approaches adapt the topi-
cal model to specific applications. Latent Dirichlet Allocation with WordNet [Boyd-
Graber et al. 2007] is a topic model that uses semantic information (under the form of
WordNet) for word sense disambiguation. It is a version of LDA that considers the word
senses as hidden variables and attempts to select the right sense when constructing topics.
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6.4 Extract, Evaluate and Improve topics

In this section, we present our solutions to the tasks of topic extraction and topic evalu-
ation, discussed in Section 6.1. The focus of our work is, as for most of this thesis, leveraging
semantic information into the learning algorithms. The topic extraction system presented
in Section 6.4.1 addresses the problem of inferring topics through means of overlapping text
clustering. Such an approach has the advantage of authorizing textual documents to be part
of multiple topics, depending on the approached subjects. Unlike previous work which uses
overlapping textual clustering [Cleuziou 2008|, our approach also addresses the problem
of human comprehension of topics by assigning each cluster a “humanly-comprehensible”
name, chose from a list of frequent complete expressions. Therefore, the user is presented
with a readable label instead of a distribution of frequencies. The topic extraction system we
present in Section 6.4.1 was implemented in the open-source CKP topic extraction software,
one of the algorithms used by the platform CommentWatcher.

For the task topic evaluation, the underlying assumption is that statistical measures do
not completely succeed in emulating the human judgment of topics. Therefore, we propose,
in Section 6.4.2, an approach which uses an existing semantic resource, such as a concept
hierarchy (e.g. WordNet [Miller 1995]). Using a topic’s highly ranked terms, we map it to
a subtree in the concept hierarchy, therefore linking a statistically extracted distribution
of frequencies to a semantic-aware structure. We redefine the specificity and coverage of
the subtree, based on its height and depth in the concept hierarchy, and we evaluate the
semantic cohesion of topics. We have undergoing work to integrate the proposed semantic-
aware evaluation of topics into CommentWatcher.

Once the topic evaluation is implemented into the CommentWatcher framework, our de-
velopped software will become a veritable topic extraction and evaluation integrated system.
Given its modular nature, multiple topic extraction systems could be compared and seman-
tically evaluated. In the remainder of this section, we present in detail the topic extraction
component (in Section 6.4.1) and the topic evaluation component (in Section 6.4.2). The
experimental validation for each of the components is succinctly presented. For more details
about the validation, the reader is invited to refer to the concerning publications.

6.4.1 Topic Extraction using Overlapping Clustering

We present a topic extraction system, which relies on overlapping text clustering and
complete keyphrase extraction. Starting from a collection of textual documents (e.g., on-
line discussions, forums, chats, newspaper articles etc.), the algorithm extract the discussion
topics and presents (i) the topic labels under the form of humanly readable keyphrases and
(ii) the partition of texts around the topics.

Figure 6.4 presents the schema of the proposed topic extraction system. In phase 1, each
of the documents in the dataset is preprocessed, as discussed in Section 6.2.1: stopwords
are removed and the inflected words are stemmed. After the preprocessing, the documents
are translated into the Vector Space Model representation (see Section 6.2.2 ) using one
of the term weighting schemes. In phase 2, the documents are clustered using the OKM
algorithm and an overlapping partition is obtained. Each document can be part of one or
multiple groups. From the original text of the documents, complete frequent keyphrases
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Figure 6.4 — Schema of a topic extraction algorithm using overlapping text clustering.

are extracted, in phase 3, using a Suffix Array based algorithm. The extracted keyphrases
serve as topic label candidates. In phase 4, the topic label candidates are are reintroduced
as pseudo-documents into the multidimensional space defined by Vector Space Model and
the cosine distance is used to chose the best name for each topic.

6.4.1.1 Phase 2: Clustering

The text clustering is performed using OKM [Cleuziou 2008], which is a K-Means variant
which authorizes documents to belong to more that one cluster. It inherits from K-Means
most of its drawbacks (i.e., its powerful dependence on the initialization and the number of
clusters which must be set arbitrarily by the user) and its advantages (i.e., linear execution
time, exposing a centroid). Nonetheless, OKM is chosen for the text clustering task for its
capacity to create an overlapping partition of the dataset. This is especially important for
two reasons: the property of polysemy of words and multi-topic documents. Words should
be allowed to be associated with multiple topics, given their corresponding senses. Similarly,
documents that approach multiple thematics should authorized to be part of their multiple
corresponding topics.

OKM follows the general K-Means schema, of iteratively optimizing an objective func-
tion by relocating the cluster centroids and re-assigning documents to clusters. In K-Means,
each document is associated to only one centroid, the one closest in terms of the employed
distance. OKM assigns a document to multiple clusters by constructing a document image
as the gravity center of all the associated centroids. Lets take the example of a document d
and centroids c¢1, co and c3. Without losing generality, we consider that

lld — c1lleos < ||d = e2|leos < ||d — c3cos

where || ® ||c0s is the cosine distance defined in Equation 6.1. Let d be the image of the
document d and A be the set of centroids to which the document d is assigned. Initially,
the document d is assigned to the closest centroid (A < ¢;) and, therefore, d = c;. The
second closest centroid (c2) is now considered and the new document image is computed as
the gravity center of ¢; and ¢z (dpew = gravity(ci, c2)). If the new document image is closer
to the document than the old image (||d — dnew||cos < ||d — doid||cos) then the document d

is also assigned to the cluster with the centroid ¢ (A <— AU ca = {c1,c2}). The process
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is continued with c3: dyew = gravity(ci, c2, c3). If the new document image is not closer to
d than the old image (||d — dynew||cos > ||d — doid||cos), then the process is finished and the
document d is assigned to clusters with the centers ¢; and cs.

In the centroid update step, each document d; contributes to each associated centroid
(each ¢j € A;). The contribution is inversely proportional with the number of clusters to
which the document belongs to: the more clusters the document is part of, the less influence
it has in the update of their respective centroids. The update formula for the centroids:

| &

where cif = 6;d; — (6; — 1)J?i\{cj}. Notations:

— A; is the set of centroids to which the document d; is assigned;

— §; = |Aj] is the number of centroids associated with document d;;

— C; is the collection of documents associated to the centroid c;;

— J?i\{cj Y is the image of document d, excluding centroid ¢; (gravity center of the

centroids to which d; is associated, except centroid ¢;);
— ¢; is the centroid to be updated.

Unlike K-Means, in OKM the update of a centroid (Equation 6.3) is dependent not only
on the documents under its cluster, but also on the other centroids (through the document
image). The result is that centroids can continue to evolve in the multidimensional space,
if the cluster composition stopped changing. In the process of topic labeling, topic names
are associated to each resulted cluster based on the similarity between the name candidate
and the cluster’s centroid. Therefore, we modify the stopping criterion of the original OKM
algorithm proposed in [Cleuziou 2008] in order to allow the centroids to evolve until they
are fully adapted to the documents in the cluster. We define a threshold € and we stop the
clustering process when the variation of the objective function (see Equation 6.2, p. 133)
between two iterations descends under the threshold. In practice, this means that the last
couple of iterations of the clustering algorithm are performed only to refine the centroids
and adapt them to the documents in their respective clusters.

The clustering phase creates a data partition that regroups documents relative to their
topic similarity. Simultaneously, this phase outputs the centroids of each class, which can
be regarded as abstract representations of the topics. These centroids are multimensional
vectors in the Vector Space Model, having a high scores for the words that are specific to
the cluster (i.e., the words that are characteristic for the specific topic).

6.4.1.2 Phase 3: Keyphrase Extraction

In order to populate the topic label candidate set, we extract frequent keyphrases from
the original text of the document. Common words (e.g., prepositions, articles), that we
removed in the preprocessing phase of the text clustering are necessary for the human
comprehension of topic labels. The topic labels need to be correctly formed expressions.
Initial documents is usually correctly formed, therefore, it suffices to extract sequences of
words from the initial text, which fulfill several conditions [Osinski 2003|:
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Table 6.1 — The suffix array for the phrase “to be or not to be”

No Suffix Start Pos
1  Dbe 6

2 be or not to be 2

3  not to be 4

4  or not to be 3

5 to be 5

6  to be or not to be 1

— they appear in the text with a minimum specified frequency. The underlying assump-
tion is that keyphrases which occur often in the text are related to the discussed topic
in a higher degree than the rare ones.

— they do not cross the sentence boundary. Usually, meaningful keyphrases are contained
into a sentence, since sentences represent markers of topical shift.

— they are a complete phrase, as defined in Section 6.3.3 (e.g. “President Barack” vs.
“President Barack Obama”).

— they do not begin or end with a stopword. For increased readability, cluster name
candidates are stripped of leading and trailing stopwords, though stopwords inside
the phrase will be preserved.

The keyphrases are extracted using a Suffix Array-based [Manber & Myers 1993] algo-
rithm, motivated by its capability to process raw untreated text, its language independence,
efficient execution time and the power to extract humanly readable phrases. This approach
has been proved very efficient. [Yamamoto & Church 2001| used a Suffix Array-based algo-
rithm to compute term frequency and document frequency for all n-grams in large corpora.
Further temporal execution optimizations are proposed in [Abouelhoda et al. 2002, who
apply it to the problem of optimum exact string matching. [Kim et al. 2003] propose an
algorithm for linear time construction of the suffix array data structure.

The keyphrase extraction algorithm uses the property of phrase completeness and it
has two phases: in the first phase, the left and right complete expressions are found. In the
second phrase, the two sets are intersected to obtain the set of complete expressions.

Suffix Array Construction A Suffix Array is an alphabetically ordered array of all
suffixes of a string. We note that in the case of keyphrase extraction, the fundamental unit
is not the letter (as in the case of classical strings), but the word. For example, the suffix
array for the phrase “to be or not to be” is shown in Table 6.1.

The bottleneck of the construction of the suffix array data structure is the sorting
of the suffixes. Two approaches are compared in |Larsson 1998| from the theoretical and
practical performance point of view: Manber and Myers and Sadakane’s algorithm.
Our keyphrase extraction algorithm implements the latter, as shown to obtain better results
in terms of time execution efficiency. Although in Table 6.1, for the sake of clarity, we have
ordered the suffixes alphabetically, the sorting algorithm only requires that the terms have
a lexicographic order. The arrival order of words into the collection can also be used, which
further speeds up the sorting. The Sadakane’s sorting algorithm is a modified bucket
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sorting, which takes into consideration the unequal dimensions of the suffixes. Considering
that a keyphrase can not pass the boundary of a sentence, we modify the construction of
the suffix array so that it is sentence-based. In practice, we build a suffix array for each
sentence and then we merge everything into a single structure. Therefore, the identification
of a suffix is given by the beginning of the suffix and the index of the its containing sentence.

Complete Phrase Discovery The right complete keyphrases are discovered by linearly
scanning the constructed suffix array in search for frequent prefixes and counting their
number of occurrences. Information about position and frequency is stored alongside the
identified prefixes. Discovering the left complete phrases is achieved by applying the same
algorithm to the inverse of the document. A version of the document which has the words
in reverse order is created, right complete phrases are detected and the correct complete left
phrases are recovered by inverting the order of the extracted prefixes. Both left complete
and right complete phrase sets are in lexicographic order, therefore they can be intersected
in linear time. Name candidates are returned along with their frequency.

The last phase is filtering the obtained phrase set using the minimum frequency condition
and the stripping of leading and trailing stopwords. Only phrases that appear in the text
with minimum frequency are kept, the rest are eliminated. [Osinski 2003| set the value
of this threshold between 2 and 5: the most frequent expressions are not necessarily the
most expressive. They are usually frequent expressions made out of common words (e.g.
“in order to”). In the end, leading and trailing stopwords are recursively eliminated from
the phrases. This further filters the candidate set. Some of the most frequent candidates
disappear completely (they are composed solely from stopwords). Others become duplicates
of existing phrases (e.g., “the president” and “president of”, both duplicate “president” when
the leading “the” and the “trailing” of are stripped).

6.4.1.3 Phase 4: Topic Labeling

The result of the text clustering space is a multidimensional space in which documents
are translated, the clusters that thematically regroup the documents and the centroids,
which summarize each cluster. The keyphrase extraction phase generates a list of topic
label candidates. In the last phase of the topic extraction, a suitable name is chosen among
the name candidates to label each topics. This is done by introducing the name candidates
as “pseudo-documents” in the same vectorial space defined for the document collection.
The keyphrases are extracted from natural language texts, so they may contain inflected
words and stopwords. The same preprocessing (i.e., stopwords removal, stemming) and
the same term weighting scheme are used with the name candidates as with the original
documents. After translating into the Vector Space Model, the last step is to calculate the
similarity between the “pseudo-documents” and the centroids of each class. The highest
scoring candidate is chosen to serve as topic label.

Other that labeling topics, this approach can be used to filter semantically irrelevant
expressions from a phrase set. As centroids are abstractions of the documents in their re-
spective classes, choosing phrases that are close in term of the considered distance, naturally
eliminates phrases that are too general or semantically irrelevant. This has a similar effect
as adding linguistic filters to statistic methods (presented in Section 6.3.3), but without
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their language and field dependency. For example, in a document group that talks mainly

about politics, the highest scoring would naturally be “parliament”, “govern”, “president”,

“party”, “politics” etc. When calculating the similarity between the group’s centroid and the
phrase candidates, phrases like “presidential elections” would have a higher similarity than

semantically irrelevant phrases like “as a matter of fact”.

6.4.1.4 Experimental Validation

In this subsection, we briefly present some experiments and results that can be obtained
with this topic extraction system. The performed experiments are still preliminary, being
performed on small datasets. We have planned to perform a more complete batch of experi-
ments and to compare to other topic extraction algorithm once we complete the integration
of the semantic-aware topic evaluation into CommentWatcher. We choose to present these
preliminary experiments mostly from a qualitative point of view, to show the capabilities
of the proposed system, and most notably the topic labeling part.

The experiments are performed on an English and a French dataset. The English dataset
is a subset of the Reuters % corpus, composed of 262 documents. The writing style is journal
article, each text contains between 21 and 1000 words. The French dataset” is issued out
of a reader discussion forum attached to a news article, entitled Commemoration®. It has an
informal writing style, it is composed of 272 documents, each one containing between 1 and
713 words.

Qualitative evaluation Table 6.2 presents an example of three extracted topics from the
Reuters subset. The 10 highest rated words, 3 highest scoring documents and the chosen
topic label are presented for each topic. Note that the highest rated words are in their
stemmed version, and, therefore, they are not always existing words. The first column shows
the extracted topic labels: “oil and gas company”, “tonnes of copper” and “united food and
commercial workers”. The second column presents the ten top scoring words associated with
each topic. The words are presented in their stemmed version. The next two columns indicate
the number of documents covered by each topic and three examples of documents from each
clusters. Let’s consider the example of the topic which covers the maximum number of texts:
“oil and gas company”. The first two texts talk explicitly about the economical activities
of companies that operate in the business of oil and natural gas (buying oil and natural
gas proprieties in the first case and estimating reserves in the second case). On the other
hand, the third document talks about the “food for oil” program between Brazil and Iraq.
Unlike the first two documents, the text does not refer to an oil company. Whatsoever, the
document is placed under the same topic, because it approaches the thematic of “oil and
gas”. It also approaches with the thematic of food and this is why the document is also
found under the topic “united food and commercial workers”. This emphasis the importance
of the overlapping property of the clustering algorithm.

6. http://mlr.cs.umass.edu/ml/datasets/Reuters-21578+Text+Categorization+Collection
7. http://eric.univ-1lyon2.fr/~arizoiu/files/commemoration.tar.bz2
8. http://www.liberation.fr/societe/0101220668-y-a-t-il-trop-de-commemorations-en-france


http://mlr.cs.umass.edu/ml/datasets/Reuters-21578+Text+Categorization+Collection
http://eric.univ-lyon2.fr/~arizoiu/files/commemoration.tar.bz2
http://www.liberation.fr/societe/0101220668-y-a-t-il-trop-de-commemorations-en-france
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Table 6.2 — Example of topics extracted from the Reuters dataset.

Topic Highest Number Text Excerpt
Label Rated of
Words docs
oil and oil, mln, 169  Kelley Oil and Gas Partners Ltd said it has agreed to purchase
gas ga, year, all of CF Industries Inc’s oil and natural gas properties for about
com- barrel, 5,500,000 dlrs, effective July 1. It said the Louisiana properties had
pany billion, lt, proven reserves at year-end of 11 billion cubic feet of natural gas
compani, and 85,000 barrels of oil, condensate and natural gas liquids. Kelley
reserv, said it currently owns working interests in some of the properties.
natur Hamilton Oil Corp said reserves at the end of 1986 were 59.8 mln
barrels of oil and 905.5 billion cubic feet of natural gas, or 211 mln
barrels equivalent, up 10 mln equivalent barrels from a year before.
Brazil will export 6,000 tonnes of poultry and 10,000 tonnes of frozen
meat to Iraq in exchange for oil, Petrobras Commercial Director
Carlos Sant’Anna said. Brazil has a barter deal with Iraq and cur-
rently imports 215,000 barrels per day of oil, of which 170,000 bpd
are paid for with exports of Brazilian goods to that country.
tonnes  tonn, 100  Mountain States Resources Corp said it acquired two properties to
of copper, add to its strategic minerals holdings. The acquisitions include a
copper  cent, total of 5,100 acres of titanium, zirconium and rare earth resources,
price, the company said. (...) The company also announced the formation
mine, of Rare Tech Minerals Inc, a wholly-owned subsidiary.
effect, Magma Copper Co, a subsidiary of Newmont Mining Corp, said it
beet, b, is cutting its copper cathode price by 0.75 cent to 66 cents a lb,
meat, effective immediately.
export
Newmont Mining Corp said Magma Copper Co anticipates be-
ing able to produce copper at a profit by 1991, assuming copper
prices remain at their current levels. In an information statement
distributed to Newmont shareholders explaining the dividend of
Magma shares declared Tuesday
united  unit, 93 The United Food and Commercial Workers union, Local 222 said
food compani, its members voted Sunday to strike the Iowa Beef Processors Inc
and plant, Dakota City, Neb., plant, effective Tuesday. The company said it
com- union, submitted its latest offer to the union at the same time announcing
mer- beef, 1t, that on Tuesday it would end a lockout that started December 14.
cial offer, (...)
workers contract, Brazil will export 6,000 tonnes of poultry and 10,000 tonnes of frozen
iowa, meat to Iraq in exchange for oil, Petrobras Commercial Director
term Carlos Sant’Anna said. Brazil has a barter deal with Iraq and cur-

rently imports 215,000 barrels per day of oil, of which 170,000 bpd
are paid for with exports of Brazilian goods to that country.

European Community agriculture ministers agreed to extend the
1986/87 milk and beef marketing years to the end of May, Belgian
minister Paul de Keersmaeker told a news conference. He said the
reason for the two-month extension of the only EC farm product
marketing years which end during the spring months was that it
would be impossible for ministers formally to agree 1987/88 farm
price arrangements before May 12. (...)
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Figure 6.5 — Fscore as a function of the number of clusters for (a) OKM and K-Means with
Term Frequency and (b) OKM with different term weighting schemes.

Quantitative evaluation The text clustering phase and topic labeling phase are evalu-
ated individually. We study (a) the behavior of OKM in text clustering compared to the
baseline K-Means and (b) the influence of the term weighting scheme on text clustering re-
sults. The number of clusters is varied between 5 and 30 and the clustering is re-initialized
10 times and averages are reported. The main approach towards evaluating the quality of
the resulted partition is to use the classical precision, recall and Fs..e indicators on a corpus
that has been tagged a priori by human experts. A sub-collection of the Reuters corpus is
used, more precisely documents that have associated at least one tag. Two documents are
considered to be “correctly” clustered if they are partitioned into the same cluster and they
have at least a tag in common. The results in Figure 6.5a show that OKM out-performs
the classical crisp algorithms, when being used for text clustering. In Figure 6.5b, we show
the evolution of the Fyeore for multiple term weighting schemes. Our experiments show that
the Term Frequency weighting scheme outperforms the other classical schemes presented in
Section 6.2.2.

Human judges are often used in the literature (e.g., [Osinski 2003, Chang et al. 2009a])
to assess the interpretability of the extracted topic. The argued reason is that the literature
does not provide a widely accepted measure for quantifying topic label quality. Moreover,
topic names need to be humanly-readable and they need to synthesize the idea behind a
group of texts. Therefore, evaluating them is trying to evaluate “human tastes”. We choose
a similar approach in order to evaluate the topic labels associated to each cluster. A number
of 5 experts were given the labeled topics and were demanded to assess if the label given
no information about the topic (grade 0), has an average quality (grade 1) or it expresses
a comprehensible idea (grade 2). The results are presented in Figure 6.6a for Reuters and
in Figure 6.6b for Commemoration, under the form of stacked bars. The results show a
rather good acceptance by the users of the constructed labels. The Term Frequency and the
Presence/Absence term weighting schemes obtain around 90% of good and average scores.
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Figure 6.6 — Topic labeling quality function of the term weighting schemes for (a) Reuters
dataset and the (b) Commemoration dataset.

6.4.2 Topic Evaluation using a Concept Hierarchy

As shown in Section 6.3, most topic extraction algorithms are statistical-only approaches.
With the exception of a minority of algorithms, some of which concerning topic labeling were
already presented in Section 6.3.3, text clustering-based algorithms and generative model-
based algorithms use numeric-only methods to capture the semantics of Natural Language.
Furthermore, even the evaluation is often performed using statistical measures only, as seen
in Section 6.3.4. Therefore, the entire topic extraction and evaluation process short-circuits
language semantics, assuming that the statistical process succeeds in capturing the meaning.
Recent works like [Chang et al. 2009a] have proved this assumptions to be too optimistic,
by showing that human judgment does not always coincide with the statistical results.

The topic extraction community has addressed this problem and the literature shows
examples of algorithms that leverage external semantic resources (see Section 6.3.2). One
of the most popular and most employed lexical resources in Natural Language Processing
is WordNet [Miller 1995]. It is also an important resource used in computational linguis-
tics, text analysis and other areas. WordNet is a lexical database for the English language
and is one of the largest existing semantic networks. The relations of hypernymy and hy-
ponymy exist between certain WordNet building blocks. These relations can be interpreted
as specialization relations between conceptual categories, thus WordNet can be interpreted
and used as a lexical ontology [Gangemi et al. 2003]. Words are grouped in WordNet into
synsets, sets of synonyms. These are paired with glosses, which are short, general definitions
of the synset. Then the resulting tuples are linked with various types of relations, including
hypernymy, hyponymy, meronymy, holonymy or antonymy. Given the property of polysemy,
each word may have several senses and for each sense it has a set of synonyms.

As for topic evaluation, automatic semantic-based evaluation systems are scarce (see
Section 6.3.4). We propose an original system, that uses a semantic resource under the
form of a concept hierarchy (in our case applied to WordNet) to automatically evaluate
topics. The underlying idea is, when evaluating topics, to emulate the human judgment
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Table 6.3 — Notations used in the next sections.

Notation  Equation Meaning
definition
C 6.4 (p. 151)  The employed concept hierarchy.
cel 6.4 (p. 151) A concept in the concept hierarchy C.
co(C) 6.6 (p. 155)  The root concept of the concept hierarchy C.
Ce 6.9 (p. 156)  The subtree having the concept ¢ as a root.
7 p- 154 A topic to be evaluated.
P(p) 6.9 (p. 156)  The set of relevant words of the topic u
w p- 152 A word that appears in a given topic.
Cy 6.11 (p. 157) The topical subtree of topic u in the entire concept hierarchy.
Copt (14) 6.11 (p. 157)  The root of the “optimum” subtree of the topic p.
1) 6.4 (p. 151)  An operator that returns the set of nodes in a given structure.
0(C) 6.4 (p. 151)  The set of nodes in the concept hierarchy C.
d(ci, cj) 6.4 (p. 151)  Set of nodes within the branch connecting the concepts ¢; and c;.
d(c;, ¢j) 6.4 (p. 151)  Edge-based distance between concepts ¢; and c;.
d(w) p. 152 Set of concepts (senses of the word w) covered by the hierarchy C.
5(p) 6.7 (p. 156)  Set of concepts related to the topic p.
o, Ce) 6.9 (p. 156)  Set of concepts in the topical subtree of the topic u and concept c.
d(w, c) 6.5 (p. 152)  The distance between a word w and a concept c.
depth(c) 6.6 (p. 155)  The depth of the concept ¢ in the the hierarchy C.
iheight(u,c) 6.7 (p. 156)  Inverse height of the topical subtree of the topic p and concept c.
spec(p, ¢) 6.8 (p. 156)  Specificity of the topical subtree of the topic p and concept c.
cov(, ¢) 6.9 (p. 156)  Coverage of the topical subtree of the topic p and concept c.
(p,c) 6.10 (p. 156) The fitness of the topical subtree of the topic y and concept c.
O, copt () p. 157 The topic fitness score of the topic p.
wq 6.8 (p. 156)  The weight of depth(c) in spec(u, ¢).
wp, 6.8 (p. 156)  The weight of iheight(u,c) in spec(u, c).
Wepec 6.10 (p. 156) The weight of spec(u, ¢) in ¢(u, c).
Weow 6.10 (p. 156) The weight of cov(, ¢) in ¢(u,c).

which served in the creation of the semantic resource. The key point of the system is
a topic-concept mapping, that passes thought words. This is equivalent to associating a
statistical-only result to a semantic-aware structure. The mapping is very similar to the
task of Word Sense Disambiguation (WSD, also known as term disambiguation) needed in
automatic ontology learning.

The idea is to search for a concept or a set of concepts which are semantically related
to at least one of each of the senses of highly ranking words of a topic. For each topic, a
topical subtree is associated in the concept hierarchy. This allows to associate each topic
with a “most related” concept and evaluate the topics based on their topic-concept relation
strength. The relation’s strength is calculated by redefining the topical subtree’s coverage
of the topic and the specificity of its root concept.

In the next subsections, we present in detail the topic-concept mapping, and the em-
ployed notions and measures. In order to help the reader, we create a reference table (pre-
sented in Table 6.3), in which we resemble all the notations that gradually appear in the
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next subsections. For each notation, we give its meaning, the equation and/or the page
where it appears first.

6.4.2.1 Topic - Concept Mapping

The main difficulty when embedding semantic knowledge into an essentially statistic
process is the mapping between the two. Given a semantic resource under the form of
concept hierarchy, the key point is to map topics to concepts (or a structure of concepts).
We consider that each of the concepts in the hierarchy represents senses of words. Knowing
that most often a topic is defined as a list of words, ordered decreasingly by their score, we
propose a mapping function between topics and concepts that passes by words. Figure 6.7
presents, in a nutshell, the proposed mapping. The most relevant words are selected for each
topic, by using, for example, a threshold on their topic score. Each word can be mapped to
a set of concepts, which represent the different senses of the word. Therefore, each topic is
mapped to a topical subtree in the concept hierarchy (denoted with a dashed line).

——————— —> Concept
subtrees £

Figure 6.7 — Mapping topics to concepts through words.

Topic - word mapping Each topic is associated with its most relevant words. This idea
is similar to the one used in [Chang et al. 2009a], where those words alone are sufficient to
satisfyingly assess a topic’s quality. The most relevant words are usually the highest scoring
words for a topic (e.g., in the case of generative topic modeling it is the word’s probability
associated with a given topic). Any user-defined function can be used, as long as it outputs
numerical scores for couples (topic, word) which can be used to rank words and filter a
set of relevant words by using a threshold. The topic-concept mapping and the consequent
evaluation consider each topic to be defined by its most relevant words. Thus it does not
interfere with the creation of the topics and is compatible with most existent topic models.

Concept hierarchy The prior semantic knowledge is available to our evaluation approach
under the form of a hierarchy of concepts, linked in a tree structure using a specific relation.
Our system uses WordNet as the source of semantic knowledge. We assimilate a (synset,
gloss) tuple to a concept and use the hypernymy/hyponymy relation as the linking relation
of the concepts. A branch in the concept hierarchy is path between two concepts, which are
either related directly (in which case the branch contains just the two concepts) or indirectly
(in which case the branch contains the two respective concepts and all the concepts in
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between). In the case of WordNet’s hypernymy /hyponymy relation, a branch between two
concepts implies that one concept is the generalization of the other.

Given such a structure, it is possible to determine when concepts are related and in
what degree. We consider that the semantic similarity of concepts is inversely correlated
with a measure of how apart they are positioned within the tree. If the distance between two
concepts is low, than they are considered to be semantically similar. We choose to define
an edge-based distance between two concepts: the length of the shortest branch between
the two concepts or infinity, if the concepts are unrelated. Of course, other measures exist
in the literature [Pedersen et al. 2004, Patwardhan & Pedersen 2006|, and trying them is a
future perspective of our work. Formally, we define the distance between two concepts:

(6.4)

o ) |0(ci,cj)| — 1, there exists a branch between ¢; and ¢;
i, Cj) =
v oo, otherwise

where ¢; and ¢; are two concepts in the concept hierarchy C and d(c;, ¢;) is the set of all the
nodes within the branch connecting ¢; and c;. More generally, ¢ is an operator that returns
the set of nodes in a given structure. §(C) is, for example, the set of nodes in the concept
hierarchy C.

Word - concept mapping FEach concept in the concept hierarchy that we employ is
associated with a list of words that have the same meaning (the synset). Inversely, given
the polysemy of words, each word can have multiple meanings and be, therefore, part of
the synsets belonging to multiple concepts. When a word is part of the synset of a concept,
we say that the concept is a sense of the respective word. In conclusion, each word w is
associated with a set of concepts d(w) C 6(C), which is the set of senses covered by the
concept hierarchy C.

Given the set of senses of a word and a distance which quantifies the strength of the
semantic relation between two concepts, we can define the distance between a word w and a
concept ¢ as the minimum distance between ¢ and a sense of w. For example, in Figure 6.8
are shown two of the senses of the word “mining”: the concepts “metal mining” and “data
mining”. The distance between the word “mining” and the concept “knowledge management”
is 2 (they are semantically related), since there is a branch of length 2 (highlighted in
Figure 6.8) between target concept “knowledge management” and the concept “data mining”.
The concepts of “metal mining” and “knowledge management” are unrelated and have a
distance of co. Formally, we define the distance between a word w and a concept ¢ as:

d(w,c) = min (d(cy,c)) (6.5)
cwES(w)

A subtree of a concept c is the subtree that has ¢ as a root. The subtree of concept c¢ is
constructed as the reunion of all the branches that connect the concept ¢ to leaf concepts
(concepts which are on the last level, the most specific concepts in the hierarchy). Intuitively,
the subtree of a concept contains all the possible specializations of the given concept (e.g.,
the subtree of “mammal” would contain ‘“cat”, “dog”, “bear” and the even more specific
“birman cat”, “hunting dog” or “polar bear”, but not “lizard”).

A word’s subtree is the reunion of all the branches that connect the concepts that are
senses of the given word (d(w)) to the root. A word’s subtree contains all the possible
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Figure 6.8 — Calculating the distance between the word “mining” and the concept “knowledge
management”. Here the distance is 2.

generalizations of a word (more precisely the generalizations of the senses of a word). In the

example of the word “mining”, the word’s subtree would contain “resource mining”, “natural

resource extraction”, “activity”, but also “data handling”, “artificial intelligence”, “computer
science”. Figure 6.8 shows an excerpt of the subtree of the word “mining”.

A word’s subtree of a concept is the concept hierarchy that contains all the generaliza-
tions of the senses of a word up to a certain concept. It is defined as the reunion of all
the branches that connect senses of the word w to the concept c. It is the intersection of
the word’s subtree and the subtree of the concept c. This allows to specify the semantic
domain in which to generalize the senses of the word. In the previous example, the word’s

3

“mining” subtree of the concept “computer” would contain only “data handling”, “artificial
intelligence”, “computer science” and it would remove the natural resources mining related
concepts. The distance between a word and a concept defined earlier can be redefined as
the minimum height of the word’s subtree of the specified concept. For the example show

in Figure 6.8, the distance if 2.

Topic-concept mapping Mapping topic to a concept structure is a similar task to that
of mapping words. We start from a topic’s relevant words, defined earlier in the topic-word
mapping. We define the topic’s related concept set, which is the union of all senses of the
topic’s relevant words present in the concept hierarchy. While this set is complete, meaning
that is contains all the possible senses associated with the topic, it is too large since many
(or most) of the concepts in it are not relevant for the topic. In a given text, words have
rarely the tendency to be associated with more than one sense. Let us take the example of
a topic extracted from texts talking about data mining. The topic’s related concept set will

contain “data mining” and “text mining”, but also “metal mining”, “oil mining” and “data
structures”. We need to filter the set to retain only concepts that are semantically related
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to the topic. This task is similar to the task of term disambiguation needed in automatic
ontology learning, which will be presented in Section 6.5.2.
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Figure 6.9 — Topical subtree of a topic having the relevant words “data” and “mining”, with
the common subtrees highlighted

A topical subtree is the union of all the word subtrees of all the topic’s relevant words.
Similarly to a word’s subtree, the topical subtree contains all the generalizations of all the
possible senses associated with the topic. Considering that the relevant words of a topic
are semantically related, then their senses are semantically related and many of their gen-
eralization are identical. This translates into overlapping word subtrees and makes possible
the identification of semantically relevant concepts in the topic’s related concept set. Going
back to the earlier example of topic extract from data mining related texts. The relevant
words for this topic are “data” and “mining”. Figure 6.9 shows a part from the topical sub-
tree. All the possible senses of the relevant words are present, such as “metal mining”, “data
mining” and “data types”. When looking at the individual words subtrees, intuitivelly the
subtree of the concept “natural resource mining” is related to the word “mining”, just like
the subtree of the concept “knowledge management”. The left and the central subtrees in
Figure 6.9 correspond to two of the senses of the word “mining”. The central and the right
subtrees (those of the concepts “knowledge manangement” and “computer programming”)
are contained in the subtree of the word “data”. The concepts that are relevant to the given
topic emerge from the overlapping of the two word subtrees. The topical subtree is gen-
erally a very wide structure that covers many semantically irrelevant synsets. A filtering
mechanism is, therefore, needed to select only the overlapping region of the subtree, which
has the highest chances of mapping to the topics semantics.

A topical subtree of a concept c¢ is the intersection between the topical subtree and
the subtree of the concept c. It is made out of all the generalizations of all the concepts
associated with a topic which that are specializations of the topic c. In the example given
in Figure 6.9, the topical subtree of the concept “computer programming” contains only
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PRAN1A

“data types”, “data structure”, “boolean”, “real” and “integer”. Using the topical subtree of
a concept c it is possible to filter regions that are not semantically relevant and focus
on smaller, denser structures. Starting from a given concept it is possible to follow the
hyperonymy/hyponymy relations to specialize or generalize the topical subtree.

6.4.2.2 Metrics and Topic Evaluation

natural
resource
mining

computer
programming

data
structure

metal
mining

boolean real integer

et o

Topic p (lr‘_‘mining" 0.53, “data” 0.25J', “ontology” 0.12 , “learning” 0.06 , “error” 0.02 ... )
Figure 6.10 — Topical subtree of a topic having the relevant words “data” and “mining”, with
the common subtrees highlighted.

Example of desired output In the previous section, we have shown how to map a
topic u to a concept ¢, more precisely to a topical subtree whose root concept is ¢. Among
all the possible topical subtrees of the concepts ¢; € §(C), we aim to identify the topical
subtree that includes at least one sense for as many of the topic’s words as possible, while
having a root concept as specific as possible. The idea is to map the topic to a dense and
compact concept structure, while not loosing too much of the topics meaning. Figure 6.10
shows the desired mapping for the previously mentioned example. The topic p is defined
by a list of words, ordered decreasingly by their score. We select “mining” and “data” as the
relevant words for p (highlighted in the word list). Each of the relevant words is mapped
to their senses in the concept hierarchy ( (i) “mining” is mapped to “metal mining” and
“data mining” and (ii) “data” is mapped to “data mining” and “data types”). Therefore the
concept set related to the topic p is { “metal mining”, “data mining”, “data types’}. The
topical subtree of the topic u is the entire subtree shown in Figure 6.10. We want to chose
a denser, smaller substructure of this tree, which covers at least one sense for each of the
relevant words of p. This optimum structure is the topical subtree of the concept “knowledge
management” which covers one sense for both “mining” and “data’.
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Topical tree measures When choosing the optimum subtree, we are facing the old
Machine Learning dilemma of choosing between precision and recall. In our context, we
define the precision as the specificity of the root concept of the topical subtree in the
concept hierarchy. Concepts close to the root of the hierarchy are very general and, thus,
have a low specificity. The specificity is also dependent on the distance between the concept
and the topic’s relevant words (the subtree’s height). The recall is defined in this context
as the coverage of the topical tree: the proportion of the topic’s relevant words that have
at least a sense in the topical subtree. Both specificity and coverage need to be maximized.

The specificity of the topical subtree of the concept c is dependent on depth of ¢ in the
concept hierarchy and the subtree’s height. The depth (depth(c)) is defined as the normalized
distance between the concept ¢ and the root of the hierarchy. When the concept ¢ is found
deep into the concept hierarchy (depth close to 1), it means that the topical subtree of
the concept c¢ is very specialized, which means that the concepts in the subtree have the
tendency of being specialized. Conversely, when c¢ is close to the root of the hierarchy (depth
close to 0), concepts in the topical tree have the tendency of being general. Formally, the
depth € [0, 1], needs to be maximized and has the following formula:

d(e, co(C))

C:zg(%’)(d(cj', c(C)))

depth(c) = (6.6)

where ¢y(C) is the root concept of the entire concept hierarchy. The iheight (inverse height)
of the topical subtree is inversely proportional with the maximum distance between the
topical subtree’s root concept ¢ and the leaves, the topical related concepts (concepts that
are senses of the topical relevant words), normalized to the topical subtree’s height (in the
entire concept hierarchy). The idea is to assess how general is the concept ¢ compared to
the senses of the relevant words. A topical tree with a high iheight is very specific. When
the iheight is low, then the tree is very general. Formally, the iheight € [0, 1], needs to be
maximized and has the following formula:

i )(d(a Cu))

C%g(az)(d(cw co(C)))

iheight(pu,c) =1 —

(6.7)

where 0(u) is the set of concepts related to the topic p. Finally, we define the specificity as a
weighted sum of height and depth, in order to allow the fine tuning of the two components.
When the weight of the depth (wq) is high, then the evaluation algorithm tends to map
topics to topical subtrees which are deep in the concept hierarchy. When the weight of the
iheight (wp,) is high, than the topical subtrees have the tendency of having few levels (they
are compact). Formally, spec,wq,wp, € [0,1], wg + wp = 1, spec needs to be maximized and
has the following formula:

spec(p, ¢) = wq x depth(c) + wy, X iheight(u, c) (6.8)

We define the coverage of the topical subtree of the topic p and concept ¢ as:

_ Hwlw e P(u), 6(w) ndo(p,Ce) # 0} |
[P (1)l

cov(p, ¢) (6.9)
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where P(u) is the set of relevant words of the topic p, 6(w) is the set of senses (concepts)
associated with the word w in the concept hierarchy C and d(u,C.) is the set of concepts
in the topical subtree of the topic p and concept c¢. The coverage € [0, 1] and needs to be
maximized.

Topic fitness function Using the specificity and the coverage, the strength of the relation
between a topic and concept subtree can be quantified. The used concept hierarchy is a
semantic resource, in which small distances mean semantically close concepts. Therefore, a
compact, dense subtree structure means that all concepts in the structure are semantically
very similar. A topical tree with a high specificity and high coverage is a tree in which
all concepts are semantically close, which is specific and which covers most of the relevant
words of a topic. We define the general score of a topical subtree of a given concept ¢
as the weighted sum of the specificity and coverage, to allow the fine tuning of the two
components. Note that other aggregating formulas can be used (though not tested), like the
classical Fscore. Formally, @, wspee, Weov € [0, 1], Wspee + Weow = 1, ¢ needs to be maximized
and has the following formula:

(1, €) = Wspee X spec(pt, €) + Weop X cov (i, €) (6.10)

We define as the “optimum” topical subtree of a topic p, the subtree of a concept cop
that maximizes ¢(u, c,,). The concept copr chosen as the root of the topical subtree is defined
as:

Copt (1) = arg?gncam(cb(u, cu)) (6.11)

where C,, is the topical subtree of topic p in the entire concept hierarchy. In practice, the
optimum subtree is found by performing a tree search starting from ¢y(C) (the roof of the
concept hierarchy) and following the specialization relations (ergo the hyponymy relation
in the case of WordNet) in the tree.

We define the topic fitness score as the score obtained by its optimum topical subtree
(d(p, copt(12))). A topic with a high fitness score is a topic with a high semantic cohesion,
since its relevant words can be mapped onto a compact semantic concept structure. The
semantic cohesion is the degree in which the most relevant words of a topic are similar
in meanings. The general score obtained by a set of topics extracted from a document
collection is the average fitness score of individual topics. The fitness function permits to
leverage semantic knowledge under the form of a concept hierarchy to evaluate the semantic
cohesion of topics extracted from a document collection.

6.4.2.3 Experimental Evaluation

In this subsection, we briefly present some experiments and results that can be obtained
with this system. The purpose of the experiments is to prove the connection between the
proposed automatic concept-based topic evaluation and the way the human mind judges
topics. The performed experiments are still very exploratory, being performed only two
datasets, with a limited range of values for parameters (wq = Wi = Wepee = Weon = 1 and
k € {30,50,100,200,300}). We choose to present here a part of the results that we have
shown in [Musat et al. 2011b]. While the experiments still need improvement (e.g., more
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datasets, varying the parameters, trying other distances between concepts, comparison with
other methods [Newman et al. 2010| present in literature etc.), we consider these first results
encouraging since they show that our proposed method achieves the emulation of human
judgement.

Datasets and protocol The experiments were performed on two datasets: the Sual111?

dataset and a custom-made dataset 1°

, containing economic news articles. Suall1l1l, initially
used in [Wang & McCallum 2006], is a general dataset on American history. The economic
dataset was built from publicly available Associated Press articles published in the Yahoo!
Finance section. A total of 23986 news broadcasts which had originally appeared between
July and October 2010 were gathered.

The experimental protocol was devised to assess the validity of our assumption that
mapping topics to concept subtrees and measuring the strength of mapping relation (topic
fitness function) is a good indicator of topical coherence. The aim is capturing the corre-
lation between the human verdict and the calculated topic fitness. The Latent Dirichlet
Allocation [Blei et al. 2003] (presented in Section 6.3.2 and built into the Mallet suite [Mc-
Callum 2002]) was used to generate the topics and the word probabilities scores used to
detect the relevant words for each topic. Human evaluations was performed by 37 external
judges and followed a similar framework as the one employed in [Chang et al. 2009a|. The
evaluators were asked to extract the unrelated (spurious) words from a group containing
the 5 most relevant words associated with one topic and an additional spurious word. One
or more unrelated words were chosen for each group, by each evaluator.

Evaluation of two dimensions The analyzed topics are separated into high fitness
scoring and low fitness scoring, on the basis of the automatically calculated topic fitness.
The relevant set contains the 10 highest scoring topics, while the irrelevant set contains
the 10 bottom scoring topics. The aim is to see whether an improvement of the spurious
word detection is visible from one category to the other. For each topic, two spurious words
were chosen. The Kullback-Leibler divergence [Kullback & Leibler 1951] is used to select the
closest and farthest topics and one of their relevant words were used as the spurious word.
Intuitively, spurious words from close topics are more difficult to detect than the one from
distant topics. Therefore, the experiments have two dimensions: to assess if the spurious
word detection improves (i) between topics with high fitness scores and topics with low
fitness scores and (ii) between spurious words originating from close topics and from distant
topics.

Based on the evaluators responses, we calculate hit  (the average percentage of correctly
identified spurious words for topics in the relevant set) and hit_ (the average percentage
of correctly identified spurious words for topics in the irrelevant set). Each indicator is
calculated in two situations: (i) when the spurious word is chosen from a close topic and
(ii) when the spurious word is chosen from distant topics. Table 6.4 presents the obtained
results, and the relative gain between (a) hit, and hit_ and (b) the values for close and
distant topics.

9. Download: http://www.gutenberg.org/dirs/etext04/suallll.txt
10. Download: http://eric.univ-1lyon2.fr/~arizoiu/files/economic_corpus_AP.tar.bz2


http://www.gutenberg.org/dirs/etext04/suall11.txt
http://eric.univ-lyon2.fr/~arizoiu/files/economic_corpus_AP.tar.bz2
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The results show that the source of the spurious word has a crucial importance: the
detection rate is almost double (an average increase of close-distant gain of 92.7%) when
the spurious word is chosen from distant topics, instead of close topics. This proves that
spurious words from distant topics are easier to identify that those chosen from close topics.
The detection rate also increases between topics from the relevant set and topics from the
irrelevant set. The relative hit gain in the detection rate varies between 6.93% to 66.76%.
The fact that the detection rate is consistently better for topics with high fitness score gives
a first positive evaluation of the fact that the topic-concept mapping succeeds in emulating
the human semantic judgment. Furthermore, we observe a significant difference between the
relative hit gain corresponding to spurious words from close topics and spurious words from
close topics. When the spurious words originates from distant topics, it is easier to identify,
regardless of the quality of the topic at hand. Whereas, when the spurious words originates
from a close topic, it is harder to spot out. It is this measure that actually shows the fact
that our concept-topic mapping emulates the human judgment: when topics are coherent,
humans tend to better identify the spurious word and our system achieves to identify these
coherent topics.

Table 6.4 — Spurious Word Detection Rates.

Dataset Type hit hit_ Gain hit
AP Close 0.37 0.27 39.33%
Distant 0.69 0.65 6.93%

Gain close-distant 86.49% 140.74%
Suall  Close 0.51 0.3 66.76%
Distant 0.75 0.59 28.55%

Gain close-distant 47.06%  96.67%

In conclusion, these results show that (i) non-related words from distant topics (from
the Kullback-Leibler divergence point of view) are easier to detect than spurious words
from close topics and (ii) spurious words inserted into topics with high fitness score (from
the concept-based evaluation point if view) are easier to detect. This proves that (i) the
Kullback-Leibler divergence can be used as a measure of the semantic distance between two
topics expressed as a probability distribution over words and (ii) the proposed topic-concept
mapping and evaluation measures succeed in capturing and quantifying the semantic cohe-
sion of a topic.

6.5 Applications

In this section, we discuss how the topic extraction and evaluation techniques, presented
in this chapter, can be used in other applications. More precisely, the reader will find,
in Section 6.5.1, how the topic-concept mapping, alongside with the measures defined in
Section 6.4.2, can be used for improving topic. We examine a method for automatically
detecting and removing spurious words from a topic’s description. In Section 6.5.2, we
present a very brief presentation of the automatic ontology learning field as well as a couple
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of hints of how topics extracted from a collection of documents can be used in ontology
learning.

6.5.1 Improving topics by Removing Topical Outliers

After presenting how topics can be created (in Sections 6.3.1, 6.3.2 and 6.4.1) and
evaluated (in Section 6.3.4 and 6.4.2), a natural follow-up is topic improvement. We use the
same general framework which is described in Section 6.4.2 (p. 148). A semantic resource
under the form of a concept hierarchy is used and a topic-concept mapping is created,
passing through words. Topics are associated with topical subtrees, which contain all the
generalizations of the senses of their most relevant words.

The idea of the topic improvement system is to create a projection of the topic as a
whole onto the given ontology and decide which part of the topic, if any, is separated from
the others. The underlying assumption is that the understandability of the given topic can
be improved by removing the parts which are unrelated from a human perspective. The
presented system is designed to improve individual topics according to their semantic cohe-
sion. We use an established simplified representation of topics, used in most of the literature,
which is the list of most relevant words. To improve topic readability and meaningfulness,
we prune the outliers from the related word set, using the concept hierarchy. Topical out-
liers are the words that are unrelated to the other words from a semantic perspective. After
the pruning, the remaining relevant words are more inter-related as a set and confer more
meaning to the user. The core of this work is establishing the conceptual context of a single
given topic, as shown in Section 6.4.2. We detect which concepts from the used ontology are
relevant to the topic as a whole and choose the topical words unrelated to those concepts
as the outliers to be eliminated.

Methodology In order to detect the topical words that are unrelated to conceptual con-
text created by the others, we must first identify the related concepts. In Section 6.4.2,
we have shown that for any given topical, multiple topical subtrees of a specific concepts
can be constructed. Each of topical subtrees were assigned a general topical subtree score,
given by Equation 6.10 (p. 156). In the evaluation process, we have selected the “optimum”
topical subtree as the one having the highest topical subtree score. In order to detect topical
outliers, we do not choose one “optimum” subtree (belonging to just one concept), but we
choose | € N topical subtrees that have the highest scores. If we are to make a parallel,
the highest ranking topical subtrees are like the axes in of Principal Component Analy-
sis (PCA) [Dunteman 1989|. Just like PCA’s axes, the topical subtrees contain decreasing
amounts of semantic information. Selecting the first few highest ranking subtrees permits to
map most of the semantic information contained in the topic. We define the topical outliers
as the words not covered by the reunion of the [ highest scoring topical subtrees for a given
the topic u. [ is a parameter of the system.

In Figure 6.11, we present a simplified version of the topical subtree for the topic
w(“mining”, “data”, “error”, “ontology”, “learning”). For [ = 2, the highest two scoring topical
subtrees are those of concepts “knowledge management” and “semantic web” (highlighted
in orange). The topical subtree of the concept “knowledge management” contains senses for
the words “mining” and “data”’, whereas the topical subtree of the concept “semantic web”
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, ontélogy”, “Ieérning”)

Figure 6.11 — Removing topical outliers using a topic-concept mapping.

contains the senses of “ontology ” and “learning”. The only word that does not have at least
one sense in the reunion of the two highest scoring topical trees is “error”, which is therefore
declared an outlier and eliminated.

We have, therefore, designed a method for detecting topical outliers, which are words
semantically unrelated to the rest of the topical relevant words. This method can be used to
improve the topics, by providing the user with a more semantically coherent list of relevant
words. But the usages are not limited to topics. In fact, this method can be used to filter
outliers from any kind of word list, as long as most of the words are semantically related
among themselves. Such an approach can be used to filter the terms which are semantically
unrelated with a specific domain concept from a list of automatically extracted terms. As
we show in the next section, the manual term filtering is one of the bottlenecks of Ontology
Learning.

6.5.2 Concept Ontology Learning

Ontologies are collections of concepts linked to-
gether through a set of relations. Ontology construc-
tion is a complex and time consuming process re- |taxonomy
quiring the knowledge of highly specialized experts. |concepts |
To overcome this knowledge acquisition bottleneck, |terms and synonyms |

Ontology Learning techniques for the automatic con- Figure 6.12 — Schema of the Ontol-

struction of ontologies have been proposed. The pro- oy Learning Layer Cache.

cess of Ontology Learning from Text involves Natural

Language Processing techniques and, as shown in Figure 6.12, can be divided into five main
steps, also known as the Ontology Learning Layer Cake |Buitelaar et al. 2005]:
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1. extraction of domain terminology and synonyms from a corpus of documents (the
terms and synonyms layer);

2. definition of main concepts on the basis of the detected relevant terms and the classes
of synonyms (the concepts layer);

3. structuring of concepts into taxonomy (the tazonomy layer);
4. definition of non-taxonomic relations between concepts (the relations layer);
5. population of the ontology with concepts and relations instances (the instances layer).

An overview of the state-of-the-art of ontology learning and the proposed solutions for each
step can be found in [Cimiano et al. 2006]. The main approach toward learning concepts
and their taxonomy (the hierarchical relations between concepts) is Conceptual cluster-
ing [Michalski & Stepp 1983], an unsupervised machine learning technique closely connected
to unsupervised hierarchical clustering. Examples of algorithms developed for this purpose
are the well-known COBWEB [Fisher 1987] and the more recent WebDCC [Godoy &
Amandi 2006]. We take a look into alternative methods and discuss the usage of topic ex-
traction at the two bottom layers of the ontology cache: the terms and synonyms layer and
the concepts layer.

Work at the terms and synonyms layer Topic extraction systems have already been
used at the terms and synonyms layer, where the challenges are (i) extracting relevant terms
that unambiguously refer to a domain-specific concept and (ii) dealing with disambiguation.
The literature provides many examples of term extraction methods [Wong et al. 2008, Wong
et al. 2009] that could be used as a first step in ontology learning from text, but the
resulted list of relevant terms needs to be filtered by a domain expert [Cimiano et al. 2006].
The topic-concept mapping presented in Section 6.4.2 and the topic improvement approach
presented in the Section 6.5.1 allow further automatization of this process. Semantic outliers
can be detected by using a general purpose semantic resource, such as WordNet, therefore
simplifying or completely eliminating the supervision of the field expert.

Disambiguation deals with choosing, considering the property of polysemy, the right
meaning for a word in a given context. Most of today’s word sense disambiguation algo-
rithms, like the one in [Lesk 1986], rely on usage of synonym sets. The literature presents
two main approaches towards finding synonyms |Buitelaar et al. 2005]:

— algorithms that rely on readily available synonym sets such as WordNet [Miller 1995]

or BuroWordNet!! [Turcato et al. 2000, Kietz et al. 2000;

— algorithms that directly discover synonyms by means of clustering. These algorithms
are based on statistical measures mainly used in Information Retrieval and start from
the hypothesis that terms are similar in meaning to the extent in which they share
syntactic contexts [Harris 1968|. text clustering places documents which share the
same context into the same group, which in turn leads to synonyms being placed
under the same topic.

As terms have different meaning depending on the context, it is only natural to allow

them to be part of more than one group. In this case, the clustering algorithm can be used to
find synonyms, but also for term disambiguation (choosing between the different meanings).

11. http://www.illc.uva.nl/EuroWordNet/
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The crisp text clustering solutions presented in Section 6.3.1 have the inconvenient that they
output a crisp partition, where each document belong to only one group. These approaches
can be used for regrouping synonyms, but they cannot be used for disambiguation. An
overlapping solution, as the one presented in Section 6.4.1, would address the disambiguation
problem, allowing terms to be in more than one cluster. Terms with multiple meanings can
be regrouped together with their synonyms, for each of their meanings.

The concepts layer: evolving topics to concepts A topic is not a concept since it
represents the abstraction of the idea behind a group of texts rather than a notion in itself.
While the difference between the two is subtle, evolving a topic into a fully fledged concept
is still to be achieved. The literature does not provide any largely accepted solution. Of
course, the simplest way to do it is to have a human expert manually evolving the topics
into concepts by adding relations and building the structure of the ontology. But in the long
term, the objective is to completely automatize the ontology building process. That is why
relations need to be found in a human-independent way.

Some of the recent topic extraction algorithms already made the first steps towards
this objective. hLDA [Blei et al. 2004| outputs an hierarchy of topics, which can pro-
vide, to a certain extent, the hierarchical relation between concepts. Other algorithms, like
cLDA [Blei & Lafferty 2006a], obtain a correlation structure between topics by using the
logistic normal distribution instead of the Dirichlet. Some authors consider that a hierarchy
of topics can already be considered an ontology. [Yeh & Yang 2008] extract the topics from
the text, using LSA, LDA or pLSA. Then they regroup them into super-topics, using a
hierarchical agglomerative clustering using the cosine distance. They consider that “because
the latent topics contain semantics, the clustering process is regarded as some kind of se-
mantic clustering”. In the end, they obtain an ontology in OWL. Topic to concept passage
is also related to other perspectives, such as reconciling the similarity-based dendrograms
built by traditional Hierarchical Agglomerative Clustering and the concept hierarchies used
in Format Concept Analysis [Ganter & Wille 1999]. The recent work of [Estruch et al. 2008]
proposes in this line an original framework to fill the gap between statistics and logic. In
Section 6.4.2 (p. 148), we presented a method for mapping topics to a concept hierarchy.
Such a mapping can be used as intermediary step from a general purpose semantic resource,
such as WordNet, to a domain specific ontology by passing though topics.

6.6 Conclusion and future work

In this chapter, we have focused on one of the core research challenges of this thesis:
leveraging semantics, and applied it to dealing with textual data. More precisely, we are
interested in the tasks of (i) topic extraction, (ii) topic labeling and (iii) topic evaluation. For
the topic extraction task, we have proposed an overlapping text clustering-based solution,
that authorizes textual documents to be associated with more than one topic, depending
on their approached subjects. For the topic labeling task, we associate to topics humanly-
comprehensible labels, which are chosen from a candidate set of frequent complete phrases.
For the topic evaluation task, we have proposed a system that aims at emulating the human
judgment of topics by using an external concept hierarchy (e.g., WordNet).



164 Chapter 6. Dealing with text: Extracting, Labeling and Evaluating Topics

Conclusion Topics are the central point of our work with the textual dimension. A topic
is a general idea behind a group of similar documents. We have shown our reader an overview
of the different approaches present in the literature which extract and evaluate topics. We
argument that the property of polysemy of words and the fact that a single textual document
can approach multiple topics are crucial in topic extraction. Therefore, we present two novel
systems, one for extracting topics and the other for evaluating topics. The topic extraction
system is based on an overlapping clustering algorithm and assigns for each of the extracted
topics a humanly readable name using a suffix array-based keyphrase extraction algorithm.
The topic evaluation system is based on an external semantic resource under the form of the
concept hierarchy. The core of the system is the topic-concept mapping, in which each topic
is associated with a topical subtree of a certain concept c¢. This structure is a concept subtree
having (i) ¢ as its root and (ii) the senses of the most relevant words of the given topic as
leaves. It contains, therefore, all the generalizations of the senses of relevant words which
are simultaneously specializations of the concept ¢. We search in the concept hierarchy for
the topical subtree which has the largest coverage (contains at least one sense for as many
as the possible of the topic’s relevant words) and is as specific as possible. We propose an
evaluation measure which quantifies the semantic coherence of a topic. Towards the end of
the chapter, we have presented two applications of the proposed systems: the detection of
outliers from a list of words (outliers are the words semantically unrelated with the others)
and the usage of topics in automatic Ontology Learning.

Practical and applied context Some of the work concerning topic extraction was ini-
tially developed during my Masters research internship. The further extensions were pub-
lished in the proceedings of a French national conference [Rizoiu et al. 2010], while the
application of topic extraction to ontology learning was published in a book chapter |Rizoiu
& Velcin 2011]. The topic evaluation methodology was developed in collaboration with the
Computer Science department of the Polytechnic University of Bucharest, and more pre-
cisely, the PhD research internship of Claudiu Cristian Mugat at the ERIC laboratory. It
was proposed in the proceedings of an international conference [Musat et al. 2011b|. The
application of outlier detection was also published in the proceedings of an international
conference [Musat et al. 2011al.

The work presented in this chapter has the particularity of being in close connection
with the different research projects in which I was involved (as discussed in Section 6.1) and
the applied part of my work. The proposals discussed in Section 6.4 either are or they will
soon be integrated into CommentWatcher, our open-source web-based platform for analyzing
online discussions on forums. CommentWatcher will be described in detail next, in Chapter 7.

Future work We identify for our work with the textual dimension some development
tracks. We consider applying the proposed topic-concept mapping to other fields of natural
language processing, such as (i) integrating semantic knowledge into the topic extraction
algorithm by using the proposed topic-concept mapping, (ii) automatic filtering of unrelated
terms at the terms and synonyms layer or (iii) word sense disambiguation in the Ontology
Learning Layer Cache.

Given the intimate link between our work concerning text and our applied work (most
notably CommentWatcher), many of our future perspectives are linked to practical aspects.
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Figure 6.13 — Streamlined schema showing how the contributions in this chapter can be
combined with those in previous chapters.

We have currently undergoing work to integrate the semantic-aware topic evaluation into
CommentWatcher. Once this is achieved, we plan to perform a thorough comparison of our
topic extraction algorithm with other state of the art extraction algorithms, from a semantic
evaluation point of view. Furthermore, given CommentWatcher’s versatile parser architecture,
we plan to test the proposed concept-based evaluation method on other, larger and more
diverse textual datasets. We also plan to (i) complete the study of the influence of param-
eters (e.g., the different weights defined in Table 6.3, p. 150), (ii) try other distances to
compare the semantic similarity of concepts and (iii) compare with existing Word Sense
Disambiguation systems.

Articulation with the previous work Conceptually, the work presented in this chapter
articulates with the work of previous chapters as shown in Figure 6.13. The work presented
in previous chapters is presented with faded colors. The joining point is, as in the case of
the previous chapters, the passing of the data though a semantic-aware numeric description
space. Furthermore, while in this chapter we presented topics and concepts from a textual
point of view, none of the two is actually limited to words. For example, the pLSA topic
extraction technique has been used [Kandasamy & Rodrigo 2010] with visual words when
dealing with images. Concept ontologies are represented using words, but concepts represent
abstract notions. Therefore, it is foreseeable to use such knowledge repositories to treat other
types of complex data. For example, in Section 2.1.2 (p. 13) we give examples of algorithms
dealing with images and text, therefore, images could be linked to concepts by passing
through text.
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7.1 Introduction

As previously hinted, my theoretical research work was constantly doubled by an applied
research work. Scripts were developed for the experimental part of each of the approaches
presented in previous chapters. These are usually just proofs-of-concept, written in scripting
languages (like Octavel). CommentWatcher, the most prominent produced software and the
one presented in this chapter, is an open source tool aimed at analyzing discussions on web
forums. Constructed as a web platform, CommentWatcher features automatic fetching of the
forums using a versatile parser architecture, topic extraction from a selection of texts and
a temporal visualization of extracted topics and the underlying social network of users. It
is aimed at both the media watchers (it allows quick identification of important subjects in
the forums and user interest) and the researches in social media (who can use to constitute
temporal textual datasets). CommentWatcher is currently used in the CRTT-ERIC research
project to study the evolution of specialized discourse in the domain of nuclear medicine,
while taking into account the temporal evolution and the different involved populations
(e.g., doctors, nurses, patients). It is also planned to be used to construct a dataset for
studying the detection of behavioral roles by using temporal-driven constrained clustering
(as seen in Section 3.6 (p. 52)).

1. http://www.gnu.org/software/octave/
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Features of CommentWatcher CommentWatcher answers to a series of limitations con-
cerning online forum discussions (some of which are detailed in Section 7.2): (a) concerning
discussion forum benchmark datasets and (b) concerning existing software solutions. (a)
We identify the following limitations concerning discussion forum benchmark datasets: (i)
scarcity of forum benchmarks, (ii) the existing forum benchmarks are issued from a single
forum website, therefore, it is not possible to study inter-website user behavior, (iii) the
structure of forum websites is continuously changing, rendering forum parsers useless and
(iv) the copyright of forum data is unclear, therefore hindering the sharing in the research
community. (b) The limitations concerning existing software solutions are that (i) they are
proprietary solutions, unusable for research purposes and (ii) they do not deal with crawling
the forum sources and need to be supplied directly with formatted data.

CommentWatcher addresses these limitations by featuring a modular parser architecture,
capable of handling the ever-changing structure of websites. Furthermore, it is open source,
meaning that it can be freely distributed. It can be used to solve the problem of content
copyright, since only the tool is distributed and the forum benchmark can be easily recon-
structed locally by each researcher. To our knowledge, CommentWatcher is the only solution
dedicated to online discussion forums that integrates (a) forum parsing, (b) topic extraction
and visualization and (c) online social network inference and visualization.

Experimenting with CommentWatcher A public demo installation of CommentWatcher is
available 2. The reader is able to interact with CommentWatcher in a normal browser window,
through the tools web interface. The tool itself is hosted and executed on its dedicated
machine, located at the ERIC laboratory. The reader can, first-hand, experience the tools
capabilities by (a) seeing how multiple discussion forums can be fetched by searching the web
using keywords, (b) applying topics extraction algorithms and tweaking their parameters,
(c) visualizing the extracted topic as a expression cloud and their temporal evolution and
(d) visualizing the social network constructed starting from the initial forums. A short
presentation movie is also available®, showing the main features of CommentWatcher.

CommentWatcher’s history The platform evolved from a simple prototype into a fully-
fledged academic software, due to the needs and purposes of the different research projects
(detailed in Appendix A) in which I was involved. It started in the context of the applied

4 was in-

research project CONVERSESSION, in which the creation of a start-up enterprise
volved. The purpose of the project was Online Media Watching, and more precisely focused
on news discussion forums. The resulted prototype is called Discussion Analysis?, a Java
desktop application that features (i) fetching of discussion forums from 2 French websites
(www.liberation.fr and www.rue89.fr) and 2 English sites (www.huffingtonpost.com
and forums.sun.com), (ii) textual preprocessing (as shown in Section 6.2.1 (p. 128)) and
(iii) topic extraction using the system described in Section 6.4.1 (p. 141). The develop-
ment of the prototype was continued in the context of projects ERiC-ELICO, CRTT-ERIC

and IMAGIWEB. The interest for each of these projects was to constitute discussion forum

. Online here: http://mediamining.univ-1lyon2.fr:8080/CommentWatcher/

. Presentation website: http://mediamining.univ-1lyon2.fr/commentwatcher

. http://www.conversationnel.fr/

. Download here: http://mediamining.univ-1lyon2.fr/rizoiu/files/discussion-analysis. jar
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datasets and to analyze the discussion topics. The platform evolved accordingly. The in-
terface was migrated to a web-based interface to allow simultaneous work of multiple users
and a unified discussion database. A new discussion forum fetching module, described in
Section 7.3.3 was implemented, which eliminates the dependency of the code base on the
website structure. Support for new topic extraction algorithms (details in Section 7.3.4) was
added. The visualization module (described in Section 7.3.5) was added for temporal topic
visualization and social network visualization. The development of the platform continues
at this date: a force-directed graph drawing is being implemented, as well as a temporal
topic model system.

Planning of the chapter The remainder of this chapter is structured as follows. In
Section 7.2, we present an overview of applied discussion forum analysis: the current lim-
itations, some of the solutions existing in the literature and an overview of our proposed
approach. In Section 7.3, we present the general design and detail the different components
of CommentWatcher. Section 7.4 gives the license under which CommentWatcher is released
and describes how to obtain the software. We conclude in Section 7.5 and we present the
work we are currently undertaking, and we plan future developments.

7.2 Discussion Forums

CommentWatcher’s vocation is to analyze online discussions. The Web 2.0 has changed
the way users discuss with other users. One of the preferred online discussion environments
are the web forums. Users can react, post their opinions, discuss and debate any kind
of subjects. The forums are usually thematic (e.g. Java programming forums®) and new
users have access to the past discussion (e.g. solutions posted by other users to a specific
problem). Therefore the users become full collaborative participants in the information
creation process. The subjects of discussion between readers are very dynamic and the
overall sum of reactions gives a snapshot of the general trends that emerge in the user
population. At the same time, the way users reply one to another suggests an underlying
social network structure. The forum’s “reply-to” structural relations can be used to add
links between users. Other types of relations can be added, like the name and textual
citations |Forestier et al. 2011]. Furthermore, based on such social networks constructed
from web forums, adapted graph measures can be used to detect user social roles [Anokhin
et al. 2012]. In Section 3.6 (p. 52), we have shown how a temporal-driven constrained
clustering technique, that we proposed in Section 3.4 (p. 34), can be applied to detect
behavioral roles in such a social network constructed from web forums.

7.2.1 Current limitations

These forum data are still ill explored, even if they represent an important source of
knowledge. News articles analysis and micro blogging (e.g. Twitter) analysis receive a lot of
attention from the community. There are available tools that perform the analysis of news
media [Amer-Yahia et al. 2012|, but without treating the social network aspect. Other tools

6. http://www.javaprogrammingforums.com/
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concentrate on analyzing and visualizing the social dynamics [Guille et al. 2013] or detect
events [Marcus et al. 2011 based on twitter data. To the best of our knowledge, there are
no publicly available tools that treat forums, while inferring a social network structure.

Another limitation concerns the forum benchmarks. There are a multitude of general
purpose information retrieval datasets (e.g. the ClueWeb12 dataset’ of project Lemure)
and of Twitter datasets (e.g. the infochimps collections®). But dedicated web forum
benchmark datasets are scarce. Those that exist are usually issued from a single forum web-
site (e.g. the boards.ie Forums Dataset? based on boards.ie website or the Ancestry.com
Forum Dataset !°, based on ancestry.com website). This is due to the diverse and ever
changing structure of the websites hosting the discussions and copyright problems. Each
host website has its own license on the user-produced data, which is not always clearly
stipulated. This leads researchers to develop their own house-bred parsers and create their
own datasets. These datasets are rarely shared with the community, which poses problems
when testing new proposals and comparing to existing approaches.

7.2.2 Related works

Several tools intending to extract knowledge from on-line discussions have been proposed
in the recent years.

MAQSA [Amer-Yahia et al. 2012] is a system for social analytics on news that allows its
users to define their own topic of interest, in order to gather related articles, identify related
topics, and extract the time-line and network of comments that show who commented which
article and when.

Eddi [Bernstein et al. 2010] offers visualizations such as time-lines and tag clouds of
topics extracted from tweets using a simple topic detection algorithm that uses a search
engine as an external knowledge base.

I is an on-line service that crawls various web-sources — such as blogs,

OpinionCraw
news, forums and Twitter — searching for a user-defined topic and then presents key concepts
as a tag cloud, provides a visualization of the temporal dynamics of the topic and performs
a sentiment analysis.

SONDY [Guille et al. 2013] is an open-source plateform for analyzing on-line social net-
work data. It features a data import and pre-processing service, a topic detection and trends
analysis service, as well as a service for the interactive exploration of the corresponding net-
works (i.e., active authors for the considered topic(s)).

The aforementioned tools are limited for various reasons. They are either propri-
etary softwares and thus can’t be extended for scientific purposes or can’t directly crawl
web sources and can only be used to analyze formatted datasets provided by the user.
CommentWatcher intends to provide researchers with an open-source extendable tool that
permits to crawl the web and build datasets that suit their needs.

. http://lemurproject.org/cluewebl2/specs.php

. http://www.infochimps.com/collections/twitter-census
. http://www.icwsm.org/2012/submitting/datasets/

. http://www.cs.cmu.edu/~ jelsas/data/ancestry.com/

. http://opinioncrawl.com
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7.2.3 Introducing CommentWatcher

We address these issues by introducing CommentWatcher, an open source web-based
platform for analyzing discussion on web forums. CommentWatcher was designed having
in mind two types of users: the forum analyst, who seeks to understand the main topics
of discussion and the social interactions between users, and the researcher who needs a
benchmark to test his/her proposed approaches. Using CommentWatcher, the researcher
can create forum discussions benchmarks without worrying for copyright issues, since the
platform is open source and the text itself is not distributed (each researcher can locally
recreate the benchmark dataset).

When building CommentWatcher we address the challenges that arise from retrieving
forums from multiple web sources. Not only these sources are profoundly heterogeneous
in structure, but they tend to change often and render parsers obsolete. We implement a
parser architecture which is independent from the website structure and allows simple on-
the-fly adding of new sources and updating the existing ones. CommentWatcher also supports
mass fetching of forums from supported sources by using keyword search on the internet,
extracting discussion topics, creating the underlying social network structure of users and
visualizing it in relation with the extracted topics.

7.3 Platform Design

In this section, we describe the software technologies used in developing
CommentWatcher, the general architecture and the different components to highlight their
aim and the way they interact.

7.3.1 Software technologies

CommentWatcher is written using Java Servlets for server-side computing and Java Server
Pages for the dynamic webpage generation. The support for fetching forums discussions from
websites is implemented using the XLS Transformation technology. New websites can be
added dynamically, without changing the source code. A MySql database is used for storing
forum structure, user characteristics and the text. The visualization is performed client-side
into a Java Applet.

7.3.2 Platform architecture

The application has three main modules, interconnected as shown in Figure 7.1. The
fetching module deals with downloading the forums, parsing the web pages and storing the
data into the database. Optionally, it can perform a keyword web search to find forums that
can be fetched. The topic extraction module performs topic extraction using an algorithm
implemented as a library on a selection of forums. The visualization module has two views:
(i) topic visualization as an expression cloud and as a temporal evolution graphic and (ii)
social network visualization.
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Figure 7.1 — CommentWatcher: overview of the platform’s architecture.
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Figure 7.2 — The design of the fetching module (a) and a screenshot of the keyword mass
fetching process (b)

7.3.3 The fetching module

This module deals with downloading, parsing and importing the forum data into the
application. The main difficulty when parsing web pages is that the structure of each page is
different. What is more, the structure of a certain web page tends to change over time. With
CommentWatcher, we have designed and implemented a meta-parser, which is independent
on the website structure. The actual adaptation of the parser to a specific page is done
using an external definition file, implemented in XSLT, a standardized and well documented
language. Therefore, adding support for new websites or modifying existing ones boils down
to just adding or modifying definition files, without any change in the parser’s source code.

The design schema of the fetching module, as well as its interactions with the user in-
terface and the database, are given in Figure 7.2a. The download action specifies the URL
of a forum to be downloaded. The bulk download follows the same idea, but a keyword web
search is performed using the Bing API and all results from supported websites are down-
loaded. A screenshot of the keyword web search and mass fetching is given in Figure 7.2b.
The specified page will be downloaded in raw HTML format which will undergo cleaning,
XSL transformation and deserialization. The process of cleaning implies transforming the
HTML document into a well formed XML. In the following step, the XSL transformation is
applied to the valid XML document using one of the XSLT definition files of the supported
websites. The result of the transformation is an XML document, which uses the same XML
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schema for all supported websites. The required data is then deserialized into Java objects,
which can be further on stored in and retrieved from the database.

The advantages of implementing such a parsing process are that it is simple, reliable,
easy to understand and modify. Furthermore, it does not hard-code the website’s structure
and it allows adding new supported websites on-the-fly.

7.3.4 Topic extraction and textual classification

This module allows extracting topics from texts from a selection of forums, already
fetched in the database. The design is modular, the extraction itself being performed by
external libraries. The text from selected forums is prepared and packaged in the format
required by the topic extraction library and then passed to the library. The user interface
allows setting the parameters for each library. Once the extraction is finished, the results are
saved into an XML document, which has the same format for all topic extraction libraries.
The XML document contains the expressions associated to each topic and their scores.

At the present, CommentWatcher supports two topic extraction algorithms, provided
by two libraries: Topical N-Grams [Wang et al. 2007| provided by the Mallet Toolkit li-
brary [McCallum 2002] and CKP |Rizoiu et al. 2010], provided by the CKP library. Topical
NGrams is a graphical model algorithms, which models topics as distributions of probabil-
ities over n-grams. CKP, which has already been presented in Section 6.4.1 (p. 141), uses
overlapping textual clustering (one text can belong to multiple clusters) and considers each
cluster of the partition as a topic. The expressions stored in the XML result document
are either (i) the resulted n-grams (for Topical NGrams) or (ii) the frequent expressions
(for CKP). Their score is (i) the probability to which an n-gram is associated to a topic
(for Topical NGrams) or (ii) 1 — d(e;, ), where d(e;, i) is the normalized cosine distance
between the frequent expression e; and the topic’s centroid p (for CKP). Support for new
algorithms and libraries can be added easily, but it requires writing adapters for the inputs
and outputs.

7.3.5 Visualization

Temporal topic visualization The visualization module is designed to help the user to
quickly understand the extracted topics and visualize their temporal evolution. It is the only
module that is executed client-side, in a Java Applet. After the XML object resulting from
the topic extraction is loaded by the applet, two visualizations are available: the expression
cloud and the temporal evolution graphic. Figure 7.3 shows a screenshot with the two
visualizations. The expression cloud visualization is similar to the word cloud visualization,
which the exception that it uses the expressions generated at the topic extraction module
and their sizes are proportional with their score. The temporal evolution graphic portrays
the popularity of each topic over the period of time. The time is discretized in a configurable
number of intervals, the user posts associated to each topic in each interval are counted and
graphics are generated for each forum or for each hosting website.

Social network visualization To facilitate the exploration of the interactions between
the members of the forum, we compute a visualization of the underlying social network. The
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Figure 7.4 — Visualizing the constructed social network, enriched with topical an user fea-
tures. One can see, inter alia, that the reply of “Robert” to “David VIETT” is associated to
topic #5.

network is colored according to the topics on which the users are interacting. We construct
the social network as a labeled multidigraph, as shown in [Forestier et al. 2011]. We map the
network nodes on the authors of messages. We add an arc labeled with the topic between
two nodes when there is, between the two users, at least one direct reply belonging to the
respective topic. We further enrich the network with user’s features as the number of posts,
the number of topics a user participates in, the number of threads a user participates in,
etc. Further measures are calculated on the graph, such as the weighted in- and out-degree,
the betweenness centrality and the closeness centrality.

Figure 7.4 shows how CommentWatcher displays the induced social network. The visual-
ization is created with the Jung Graph Library '? and is interactive, so nodes can be selected
in order to see their features. Relations can also be filtered in order to show only the network
corresponding to certain topics.

12. http://jung.sourceforge.net
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7.4 License and source code

CommentWatcher is released under the opensource license GNU General Public Li-
cense version 3 (GNU GPL v3)!3. The individual topic extraction and textual cluster-
ing software packages are the objects of their respective licenses. The present version
of CommentWatcher comes with two Natural Language Processing toolkits: the Mallet
Toolkit [McCallum 2002| v2.0.7, released under the open source Common Public License,
and CKP [Rizoiu et al. 2010] v0.2, released under the GNU GPL v3. The install files and
the source code of CommentWatcher is available through a public Mercurial repository 4.

7.5 Conclusion and future work

Conclusion This chapter presented CommentWatcher, an open source web-based platform
for analyzing discussions on web forums. Our tool is designed for both end-users, as well as
for researchers. End-users have at their disposal an easy to use, integrated tool that allows
retrieving forum discussion from multiple websites, performs topic extraction to identify
the main discussion topics and provides an expression cloud visualization to identify the
most important expressions associated to each topic. The temporal popularity of topics
can be evaluated using an evolution graphic. CommentWatcher also features extracting the
underlying social network by using the direct citation links between users. The visualization
of the social network is interactive, features of nodes can be visualized and relations can
be filtered to show only the network corresponding to a certain topic. For researchers,
CommentWatcher tackles the problem of creating multi source web forum datasets, thanks
to its versatile parser which is independent of the structure of webpages. Support for new
websites can be added on-the-fly. It can also solve the problem of copyright when sharing
forum datasets, since no text is distributed and each researcher can easily recreate the
dataset.

Current and future development With the beginning of the CRTT-ERIC project,
CommentWatcher has officially become one of the academic software supported by the DMD
(Data Mining and Decision) team of the ERIC laboratory. It is currently the center point
of multiple student research and development internships and has recently acquired a dedi-
cated machine. The objects of the ongoing development are (i) a better plotting of the social
network, by using force-directed graph drawing, (ii) integrating a temporal topic model al-
gorithm and (iii) importing external data into the discussion database, in order to be able
to treat other types of discussions (e.g., chat discussions). As future work, we intend to
add a credential mechanism and transform CommentWatcher into a multiuser tool and we
consider implementing a topic evaluation based on ontologies of concepts, as presented in
Section 6.4.2 (p. 148).

13. http://www.gnu.org/licenses/
14. http://eric.univ-1lyon2.fr/~commentwatcher/cgi-bin/CommentWatcher.cgi/CommentWatcher/
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This final chapter of my thesis is dedicated to drawing some general conclusions, briefly
presenting the current work and outlining directions for future work. This chapter is struc-
tured into four parts: summary of the work, original ideas, conclusions, and outline of future
work. In Section 8.1 we present, for each chapter, an outline of the original contributions
and their positioning relative to existing methods. The three most important original ideas
in our work are singled out in Section 8.2 and shown in the context of the publications they
generated. The conclusions follow in Section 8.3 and present a meta-view of our work, under-
lining how the directive guidelines manifested in our work, the different transverse links that
appear between the different parts and their conceptual articulation. Finally, Section 8.4
closes the chapter by detailing the ongoing work as well as the planned extensions of the
research presented in this thesis.

8.1 Thesis outline

The purpose of this section is to present an overview of the work presented in this thesis
and, most notably, to position our contributions relative to the current state of the art. It
also follows the logical flow of ideas throughout our work and creates a summary of the
tasks and accomplishments.

All the work presented in this thesis lies at the intersection of Complex Data Analysis
and Semi-Supervised Clustering. More specifically, we address two research challenges:
(i) embedding semantics into data representation and machine learning algorithms and (ii)
leveraging the temporal dimension. We investigate on how data of different natures can be
analyzed, while considering the temporal dimension and the additional information that may
come with the data. Given the great heterogeneity of complex data (e.g., different natures,
temporal dimension) our work touches to many different aspects of Machine Learning. Our
research ranges from introducing partial supervision into clustering, to using ontologies for
topic evaluation and to extracting visual features from images. After a chapter in which we
present an overview of the domain, we present our original research in four chapters, (a) one
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for the temporal dimension, (b) a second one dedicated to reconstructing a feature set, with
direct application in re-organizing user-supplied additional information under the form of
labels, and the last two of them corresponding to the considered natures of complex data
( (c) text and (d) images). A fifth chapter is dedicated to CommentWatcher, an academic
software, result of the applied research and in close connection with the work on the textual
dimension. Given the great diversity of the approached subjects, each chapter contains
dedicated sections presenting the related work in the given field, the proposed contributions
and partial conclusions. Therefore, each of the five chapters can be seen as autonomous,
while remaining connected by the general research topics and the transverse links between
them (some detailed in Section 8.3).

Chapter 1 starts by positioning our work and presenting the general context of the
thesis. It is followed, in Chapter 2, by an overview of the two domains around which our
work revolves: Complex Data Analysis and Semi-Supervised Clustering.

Chapter 3 addresses the task of leveraging the temporal dimension of complex data into
clustering. Relative to existing methods, the work proposed in this chapter introduces (a) a
new temporal-aware dissimilarity measure, which combines the descriptive dimension with
the temporal dimension and allows the fine-tuning of their ratio; (b) a new penalty function,
calculated using a function inspired from the Normal Distribution function, to ensure a
contiguous segmentation of the observations belonging to an entity. Unlike existing solutions,
which are basically a threshold function, our proposal inflict a high penalty for breaking
the constraints for observations close in time and a low penalty for distant observations; (c)
a novel time-driven constrained clustering algorithm, called TDCK-Means, which creates
a partition of coherent clusters, both in the multidimensional space and in the temporal
space; (d) a new measure (ShaP), to evaluate the contiguity of the segmentation of the
series of observations belonging to an entity and (e) a new method to infer social roles in
a social network as a mixture of temporal behavioral roles. As far as we know, this is the
first proposal to infer the social roles as a succession of temporal states, previous solutions
concentrate on calculating a set of measures on the network’s graph.

Chapter 4 regroups our research concerning the task of semantic data representation
reconstruction. In this chapter we address the problem of improving representation space
of the data by using the underlying semantics of the dataset. Relative to existing meth-
ods, the work proposed in this chapter introduces (a) two algorithms that construct the
new features as conjunctions of the initial features and their negations. The constructed
features are more appropriate for describing the dataset and, at the same time, are com-
prehensible for a human user. The methods present so far in the literature either construct
non-comprehensible features (e.g., PCA, the kernel of SVM) or construct comprehensible
features in a supervised way. As far as we know, this is the first solution for an unsuper-
vised construction of comprehensible features. We also propose (b) a measure to quantify
the total co-occurrence of a feature set; (¢) a method, based on statistical testing, for setting
the value of parameters; (d) a method, based on statistical considerations, for pruning the
candidate pairs of correlated features.

Chapter 5 presents our research concerning image data, and more specifically the task
of improving image representation using semi-supervised visual vocabulary construction. We
are interested in using expert knowledge, under the form of non-positional labels attached
to the images, in the process of creating the image numerical representation. Relative to
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existing methods, the work proposed in this chapter introduces (a) a method for constructing
a dedicated visual vocabulary starting from features sampled only from a subset of labeled
images. This ensures that the generated visual vocabulary has words adapted to describing
each of the objects appearing in the image collection; (b) a novel method for filtering features
irrelevant to a given object, using non-positional labels. We show that that filtering approach
consistently improves the accuracy of a content-based image classification task.

Chapter 6 presents in detail our research concerning textual data, and more precisely,
we interest in the task of topic extraction and evaluation. We make an in-depth review of
topic extraction and evaluation literature, while referencing methods related to our gen-
eral domain of interest (e.g., incorporating the temporal dimension or external semantic
knowledge). Relative to existing methods, the work proposed in this chapter introduces (a)
a textual clustering-based topic extraction system; (b) a topic evaluation system. Most of
the solutions present in the literature use statistical measures (e.g., the perplexity) to asses
the fitness of topics. Our solution uses an external semantic resource, such as WordNet, to
evaluate the semantic cohesion of topics.

Chapter 7 presents the practical prototype production, most notably CommentWatcher,
an open source tool for analyzing discussions on web forums. Most of the solutions present
in literature have the inconvenience of being either (a) proprietary (i.e., cannot be used
in scientific purposes) or (b) unable to crawl web sources and can be only used to ana-
lyze formatted datasets provided by the user. CommentWatcher has the advantage of being
constructed as a web platform, giving the possibility of being used collaboratively. It also al-
lows to by-pass the problem of copyright issues: the platform is open-source and the forum
benchmark needs not to the distributed (each researcher can locally recreate the bench-
mark). CommentWatcher features (i) automatic fetching of forums, using a versatile parser
architecture, (ii) topic extraction from a selection of texts and (iii) a temporal visualization
of extracted topics and the underlying social network of users.

8.2 Original contributions

We summarize our work by presenting three of the most important ideas of our research.
Most of the original proposals presented in this thesis are related to these ideas:

— taking into account both the temporal dimension and the descriptive dimension into a
clustering framework (in Chapter 3). The resulted clusters are coherent from both the
temporal and the descriptive point of view. Constraints are added to ensure the entity
segmentation contiguity. This idea is presented in a paper in the proceedings of the
International Conference on Tools with Artificial Intelligence (ICTAI ’12),
paper which won the best student paper award |Rizoiu et al. 2012];

— unsupervised construction of a feature set based on the co-occurrences issued from the
dataset (in Chapter 4). This allows adapting a feature set to the dataset’s semantics.
The new features are constructed as conjunctions of the initial features and their nega-
tions, which renders the result comprehensible for the human reader. This idea was
published in an article with the international Journal of Intelligent Information
Systems (JIIS) [Rizoiu et al. 2013a];

— using non-positional user labels (denoting objects) to filter irrelevant visual features



180 Chapter 8. Conclusion and Perspectives

and to construct a semantically aware visual vocabulary for a “bag-of-feature” image
representation (in Chapter 5). Even if the position of objects is unknown, we use the
information about the presence of objects in images to detect and remove features
unlikely to belong to the given object. Dedicated visual vocabularies are constructed,
resulting in a numerical description which yields higher object categorization accuracy.
This idea is presented in an article under review with the International Journal of
Artificial Intelligence Tools (IJAIT) [Rizoiu et al. 2013b].

Throughout this manuscript, multiple contributions were proposed, some of which are
issued from the major ideas presented before. Others are related to the textual nature
of complex data and the prototype production, and were published in the proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI ’11) [Musat
et al. 2011b|, the International Symposium on Methodologies for Intelligent Sys-
tems (ISMIS ’11) [Musat et al. 2011a], the French national conference Extraction et
Gestion des Connaissances (EGC ’10) [Rizoiu et al. 2010| and a chapter in the book
Ontology Learning and Knowledge Discovery Using the Web: Challenges and
Recent Advances [Rizoiu & Velcin 2011]|. A complete list of the publications issued from
the research presented in this thesis can be found in Annex B.

8.3 General conclusions

There are two main research challenges that our work addresses: (i) embedding semantics
into data representation and machine learning algorithms and (ii) leveraging the temporal
dimension. The two challenges are linked to (a) the applications concerning the structuring
of the immense quantities of complex data produced by the Web 2.0 and (b) the embedding
of semantics into webpages, which is the object of the Semantic Web. The general context my
thesis lies at the intersection of Complex Data Analysis and Semi-Supervised Clus-
tering. In our work concerning the semantic representation, we concentrate on leveraging
additional external information, under the form of expert-provided information (e.g., image
labels in Chapter 5) and external semantic resources (e.g., concept ontologies in Chapter 6),
while our work concerning the temporal dimension of data is presented in Chapter 3.

As mentioned earlier, our work is composed of four distinct, yet complementary parts.
The four parts deal, respectively, with (a) the temporal dimension, (b) semantic data repre-
sentation and the different natures of complex data, i.e., (¢) image and (d) text. Each part
is dealt with in an individual chapter, which contains an overview of the state of the art of
the domain, the proposals, conclusions about the work and some plans for future work. A
fifth chapter is dedicated to the my applied work. Therefore, each of the five chapters can
be seen as autonomous, while remaining connected the directive guidelines, the trans-
verse links between them and the conceptual articulation. We detail in the following
paragraphs how each of the above were taken into account in our work.

Directive guidelines While the different aspects of our work are distinct, they are not
independent one from the other. Each deals with the different particularities of complex
data, while respecting the same directive guidelines: (i) human comprehension, (ii) trans-
lating data of different natures into a semantic-aware description space and (iii) devising
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algorithms and methods that embed semantics and the temporal component.

We consider crucial to generate human comprehensible outputs and we have stressed
this aspect all along this thesis. Our proposal for feature construction, in Chapter 4, was
partly motivated by this need. Black-box approaches (i.e., the feature extraction and the
feature selection algorithms presented in Section 4.2, p. 63) exist and they can achieve well
the reduction of co-occurrences in the feature set. But the new features are completely syn-
thetic and make results difficult to interpret. Human comprehension is also central for topic
labeling, presented in Chapter 6. We argue that a complete expression is more meaningful
for a human being than a probability distribution over words. Similarly, when generating
the typical evolution phases in Chapter 3, human comprehension motivates the choice to
segment contiguously the observations corresponding to an entity.

As shown in Section 2.1 (p. 9), some of today’s challenges concerning complex data lie in
(a) rendering the data into a common usable numeric format, which succeeds in capturing
the information present in the native format, and in (b) efficiently using external informa-
tion for improving the numeric representation. The second directive guideline throughout
our work is translating data of different natures into a semantic-aware description
space, which we call the Numeric Vectorial Space. Our work concerning images in Chap-
ter 5 is specifically targeted at embedding semantic information in the image numerical
description. Section 6.2 (p. 128) in Chapter 6 is dedicated to translating textual data into
the “bag-of-words” numerical representation. Finally, the purpose of the feature construction
algorithm in Chapter 4 is to improve the representation of data, by adapting the features
to the dataset they describe.

Finally, a central axis of our research is devising algorithms and methods that
embed semantics and the temporal component, based on unsupervised and semi-
supervised techniques. Often additional information and knowledge is attached to the data,
under the form of (a) user labels, (b) structure of interconnected documents or (c) exter-
nal knowledge bases. We use this additional knowledge at multiple instances, usually using
semi-supervised clustering techniques. We use such an approach when constructing a seman-
tically improved image numeric representation, in Chapter 5. Dedicated visual vocabularies
are constructed starting from the provided labeled subset of images. But the entire im-
age collection (labeled and unlabeled) is used to generate the actual image representation.
Furthermore, our work with the text also deals with leveraging external semantic knowl-
edge into the topic evaluation process. Similarly, in Chapter 3, we use semi-supervised soft
pair-wise constraints to model the temporal dependencies in the data.

Transverse links There are multiple transverse links between the different parts of
our work. (a) The feature construction algorithm, uFC, was initially motivated by the
need to re-organize the user user label set we use to create the semantic-enabled image
representation. In Section 5.5 (p. 121), we discuss how the proposed semantic visual vocab-
ulary construction can be adapted to scene classification (where the main problem is label
co-occurrence) by using the proposed feature construction algorithm. (b) Our work with
textual data is intimately linked with the software CommentWatcher. The text from online
discussion forums is retrieved, we extract topics from it and infer a social network using the
forum’s reply-to relation. The social network is modeled and visualized as a multidigraph,
in which links between nodes are associated to topics. (¢) Furthermore, the temporal-driven
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Figure 8.1 — Conceptual integration of the work in the thesis.

clustering algorithm TDCK-Means is applied to detect social roles in the social network.
Behavioral roles are first identified, as shown in Section 3.6 (p. 52), and social roles are
inferred as a succession of behavioral roles. (d) Finally, we have ongoing work which deals
with embedding the temporal dimension into the feature construction algorithm. The idea
is to detect if features are correlated with a certain time lag. We give more details about
this current work in Section 8.4.1.

Conceptual articulation of the different parts The semantic-enabled numeric rep-
resentation space is also the conceptual joining point of the different parts of our research,
as shown in Figure 8.1. Given the extent of the approached subjects, the schema is not a
blueprint of an integrated system. It rather has the vocation of giving the reader an overview
of the articulation between the different parts of our work: data of different natures is trans-
lated into a semantic-aware numeric format, which is afterwards further used together with
the temporal dimension or with external knowledge bases. This space is not common for all
types of considered data and, therefore, we treat, in our work, each data type individually.
One of the long term future plans of our work is a broader integration of all the information
provided by complex data (e.g., dealing simultaneously with data of different natures, the
temporal component and expert knowledge).

The schema presented in Figure 8.1 was incrementally constructed in Figures 3.1 (p. 30),
4.17 (p. 93), 6.13 (p. 165), and 5.13 (p. 122). At the end of each chapter, the reader was
shown how the work presented in the given chapter can be conceptually integrated with the
work in previous chapters.
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8.4 Current and Future work

The domain of this thesis is vast and plenty of work still remains. Future work for each
of the parts has already been planned in the corresponding chapters. The remainder of this
section will revisit some of them and present them in a broader context. We divide our
research plans into current work and future work, depending on their status of ongoing or
planned work. The order of presentation roughly represents the advancement of each of the
ideas, mostly for current work.

8.4.1 Current work

Detecting behavioral roles At present, we are simultaneously working on multiple
extensions and applications of our work. One of the directions of our current work is to
apply TDCK-Means to the detection of user social roles in social networks. This work is
performed in collaboration with the Technicolor Laboratories in Rennes, France, and it is in
an advanced state: the submission of an article is already planned. The reader has already
seen a more detailed description of this current work in Section 3.6 (p. 52).

Our underlying hypothesis is that, when interacting in an online community, a user plays,
during a given period of time, multiple roles. We assume that these roles are temporally
coherent (i.e., a user’s activity is uniformly similar when in a role) and he/she can change
between roles. We call these roles behavioral roles and we construct a global social role
as a mixture of different behavioral roles, which incorporates the dynamics of behavioral
transitions. Therefore, we define the user social role as a succession of behavioral roles.

The social roles of users are constructed based on the social network inferred from
online discussion forums. The used TWOP [Anokhin et al. 2012| dataset is constructed based
on Television Without Pity' forum website. We have briefly shown, in Chapter 7, how such
a social network can be constructed (when we presented CommentWatcher, our tool designed
to analyze online discussion forums). The nodes of the graph are the users posting in the
forums. A directed arc is added between users A and B when A replies to B. Social roles
are identified in a three-phase framework: (a) behavioral features are identified based on the
structure of the inferred social network, (b) behavioral roles are created using TDCK-Means
and (c) the user social roles are determined based in the transitions between behavioral roles.
Section 3.6 (p. 52) describes more in detail this process, alongside with some preliminary
results.

Inferring a graph structure for temporal clusters In Chapter 3, when we constructed
our temporal clustering algorithm, TDCK-Means, we concentrated on the temporal and
descriptive coherence of clusters, as well as on the contiguous segmentation of observations
belonging to an entity. We are currently working on an extension of TDCK-Means, which
also organizes the resulted temporal clusters in a graph structure. This would be very
useful for the human comprehension of the constructed evolution phases (see the discussion
on the human comprehensibility guideline of our work, in Section 8.3). The trajectory of an
individual through an evolution graph is easier to follow and more informative towards the
relations between phases.

1. http://www.televisionwithoutpity.com/


http://www.televisionwithoutpity.com/
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We are working on (i) a temporal distance between clusters and (ii) a function that
quantifies the intersection of two clusters. We plan to extend the Objective Function de-
fined in Equation 3.7 (p. 39) with these two functions, which quantify the relation between
two clusters. With these modifications, the graph’s adjacency matrix could be inferred si-
multaneously with the temporal clusters.

Temporal feature construction Another research direction that we already started
undergoing is incorporating temporal information into the feature construction algorithm,
presented in Chapter 4. From a research challenge point of view, this work will allow the
integration of our two research challenges, with which, for now, we deal individually.

This work is motivated by the fact that the introduction of the temporal information
changes the problem definition. The datasets used in Chapter 4 have no temporal evolution.
The building block of the uFC algorithm is feature co-occurrence. We have motivated that
this co-occurrence is not the fruit of hazard, but has a semantic meaning. For example,
“manifestation” co-occurs with “urban” because usually manifestations take place in cities.
With the introduction of the temporal information, new questions arise and new semantic
information can be induced. Such a question would be what means co-occurrence in a tempo-
ral context? Some features might co-occur, but not simultaneously. For example, the arrival
to power of a socialist government and the increase of the country’s public deficit might be
correlated, but with a time lag, as the macro-economic indicators have a big inertia. The
purpose of this work is to detect such “correlations at a time lag” and create new features
like “socialist” and “public_ deficit” co-occur at a time lag 9.

We have extended the correlation coefficient defined in Equation 4.5 (p. 70) to calculate
the correlation with a given fixed lag §. The experiments we performed so far show that
an “optimum” lag d can be determined, that maximizes the temporal correlation. We are
currently working on an extension of the and operator to the temporal case. The new

. . . 6
features are no longer constructed as boolean expressions, but as temporal chains like f; =+

fi LEN fr, meaning that f; precedes f; at a time distance d1, which f; precedes fj, at a time
distance ds.

This approach allows us to improve our feature construction algorithm, so that it uses
the temporal dimension in addition to data semantics to improve data representation. In
addition, the newly constructed temporal features can be used as easily comprehensible
labels for the temporal clusters extracted using TDCK-Means.

8.4.2 Future work

One of our short term plans is devising a method for automatically setting the values
of TDCK-Means’s parameters («, § and 0), by using an approach inspired from multi-
objective optimization using evolutionary algorithms |[Zhang & Li 2007|. The idea is to
transform the learning process into a multi-objective learning problem. Each of the additive
components of the objective function defined in Equation 3.7 (p. 39) becomes an objective
(in the sense of multi-objective optimization). Multiple instances of TDCK-Means, with
multiple initial combinations of values for «, 8 and §, will be launched simultaneously and
a small seed set of solutions will be obtained. Using evolutionary algorithms, the seed set can
be evolved to approximate the Pareto front (in the space defined by the different objectives).
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In the end, it suffices to chose, on the generated Pareto front, a compromise solution, for
example using a technique similar to the one employed in Section 4.5.2 (p. 74). Such a
technique would eliminate the need to arbitrarily set the parameters and would guarantee
an “optimum” (meaning Pareto non-dominated), given certain criteria.

Another planned extension venue is adapting the image representation construction
proposal to incomplete labeling. This boils down to adapting the feature construction
algorithm to data issued from the internet (e.g., labels on an image sharing platform). We
have made several assumptions about the feature set (in Chapter 4) and the label set (in
Chapter 5). For comprehensibility reasons, in the remainder of the discussion we consider
the two as being the same problem in two different contexts and we denote them as labels.
Throughout Chapters 4 and 5, we considered the labeling to be complete: if the label was
not present, it therefore means that the object is absent. This assumption supposes binary
labeling, where true means presence and false means absence. In the case of real world
labeling, the absence of a label might also mean that the user forgot/chose not to label
the given image/document. Therefore, a value of false is no longer a sure indicator for
the absence of the given object. For example, when a user is labeling an image depicting a
cascade and has a choice between water, cascade or both, he/she might choose only cascade
as it is the most specific. This adds new challenges for both (i) the feature construction
algorithm (i.e., the co-occurrence of water and cascade is no longer present) and (ii) the
filtering algorithm for image representation construction (i.e., a keypoint belonging to a
cascade is not different from a keypoint belonging to water).

Our short term plans for the applied part of our work are closely related to the textual
data. We intend to implement the proposed topic evaluation using a concept hier-
archy in CommentWatcher. This, alongside integrating other topic extraction algorithms,
will allow performing a thorough comparative evaluation of topic models in the context of
internet issued texts. Most of the extensions for CommentWatcher concern the visualization
module, and more specifically the generation of the social network based on the discussion
forums. Other, longer term plans include extending (a) the natures of complex data that
can be processed and (b) the knowledge that can be used as additional information (e.g.
processing video, using knowledge from the semantic web etc.). In a foreseeable future, the
treatment of structured data of multiple natures will be integrated into CommentWatcher
and it will become a veritable “media mining” platform, capable to retrieve and analyze text
and images from discussion forums, online news media and other imaginable online sources.

The long term goal, for both the theoretical and the applied parts of our work, is a
broader integration of all the information provided by complex data: text, image, video, au-
dio, numerical measurements, temporal dimension, user labels and ontologies. Throughout
this manuscript, we have shown our reader how to solve a number of different tasks (e.g.,
how to take time into account, how to evaluate topics using external resources), but the real
objective is devising algorithms and data representation that are capable of taking profit
from every available piece of information and construct a complete knowledge inference
system.






APPENDIX A

Participation in Research Projects

A.1 Participation in projects

Some of the learning tasks presented in Chapter 1 were partially motivated by the
specific problems and applications needed by the different research projects in which I was
involved. I present, in Table A.1, the list with these projects alongside with my contributions
to them.

A.2 The IMAGIWEB project

On a daily basis, millions of people post their opinions on Web 2.0 and discuss about
various topics such as the news, politics, the latest results of athletics, etc. These kinds of
postings contribute to the production and dissemination of the image of different entities,
such as that of politicians or companies. The image, as we specify it here, is a structured
and dynamic representation which can be seen in at least two ways: the representation that
an entity wishes to assign to itself, and the view that a person or a group of persons has of
this entity. Thus, Internet seems to be privileged in its role as a contributor to disseminate,
strengthen and impose representations and opinions, and as a place where the logic of
influence is present.

In this framework, the IMAGIWEB project aims precisely at studying the image of entities
of various kinds (companies, politicians, etc.) as this is diffused and viewed on the Internet.
The study of these representations and their dynamics is considered today to be a real
challenge which, if it is resolved (even partially), will not only allow to respond to specific
needs, especially in the field of the press watching, but it will also answer to important
nowadays issues in the field of political sciences and sociology in general.

The project proposes two major novelties. The first is to address together a set of issues
treated so far separately (i.e., study of the opinions, taking context into account, the topic
evolution, social network analysis, study of the topology of the Web) around a common
object that is the image of entities (in the sense of the representation) that populate the
Web. Emphasis is given to the fact that one entity can be associated with several different
images, and also to the underlying temporal aspect of the dynamics of the images.

The second novelty concerns the involvement in the project of Social Sciences and Hu-
manities researchers. This is still quite rare in such computer science projects. Thus, the

. https://research.technicolor.com/rennes/

. http://eric.univ-1lyon2.fr/~jvelcin/imagiweb/
http://recherche.univ-lyon2.fr/crtt/

http://wuw.elico-recherche.eu/?lang=en

. http://www.conversationnel.fr/

. Download here: http://eric.univ-1lyon2.fr/~arizoiu/files/discussion-analysis. jar
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Table A.1 — List of research projects in which I was involved during my PhD thesis.

Period Name and short description

2012 - present: Research project with Technicolor R&I Labs!, Rennes
Apply and develop the research in the domains of temporal clustering to
social role identification in social networks.
Contribution: Research concerning the learning task of social role identifi-
cation, detailed in Section 3.6 (p. 52).

2012 - present: The IMAGIWEB ? project (financed by the ANR)
Analyze the evolution of the image of politicians and enterprises through
social media and Twitter. IMAGIWEB is further detailed in Section A.2.
Contribution: Research concerning the task of detecting typical evolutions
and temporal data clustering, applied to a political science dataset. More
details in Chapter 3.

2012 - present: The CRTT *-ERIC project (financed by the Lyon 2 University)
Study the evolution of specialized discourse in the domain of nuclear
medicine, while taking into account the temporal evolution and the differ-
ent involved populations (e.g., doctors, nurses, patients).
Contribution: Research concerning the tasks of topic extraction, labeling
and evaluation (details in Chapter 6). Applied work and student internship
supervision towards developing CommentWatcher.

2010 - 2011: The Eric-ELico * project (financed by the Lyon 2 University)
Analyze the information extracted, either by usage of machine learning algo-
rithms or manually, by the experts in Communication Sciences.
Contribution: Research concerning the tasks of topic extraction, labeling
and evaluation and content-based image classification. Applied work towards
developing CommentWatcher.

2009: The CONVERSESSION project (financed by the Rhone-Alpes region)
Develop a new platform for organizing and analyzing online forum discus-
sions. The project was associated with the creation of a start-up enterprise °.
Contribution: Research concerning the tasks of topic extraction, labeling
and evaluation and applied work: I have developed the prototype®, dealing

with the parsing web forums, topic extraction and topic labeling.

case study about the EDF (French Electricity Company) company will be carried out with
the assistance of a semiologist who will be able to enlighten the automated analysis pro-
vided by computer tools produced during the project. In addition, the involvement of the
social scientists of CEPEL will allow not only to conduct a relevant study on the image of
the politicians, but also to provide answers relative to the issues of representing the data
extracted from the Web and characterizing the panels of Internet users.

The project IMAGIWEB involves six partners: (a) three academics: the ERIC Labora-
tory 7, the CEPEL laboratory® and the LIA laboratory? and (b) three companies: AMI

7. http://eric.univ-1lyon2.fr/
8. http://www.cepel.univ-montpl.fr/
9. http://lia.univ-avignon.fr/
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A.2. The IMAGIWEB project 189

Software 19, EDF ! and XEROX 2. The IMAGIWEB project is financed by the French Na-
tional Research Agency (ANR).

10. http://www.amisw.com/en/
11. http://innovation.edf.com/innovation-et-recherche-20.html
12. http://www.xrce.xerox.com/
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List of Publications

International journals

— Marian-Andrei Rizoiu, Julien Velcin and Stéphane Lallich. Unsupervised Feature Con-
struction for Improving Data Representation and Semantics. Journal of Intelligent
Information Systems, vol. 40, no. 3, pages 501-527, 2013.

Proceedings of international conferences

— Marian-Andrei Rizoiu. Semi-Supervised Structuring of Complex Data. In Doctoral
Consortium of International Joint Conference on Artificial Intelligence, Proceedings
of the Twenty-Third, IJCAI 2013. AAAI Press, November 2013.

— Marian-Andrei Rizoiu, Julien Velcin and Stéphane Lallich. Structuring typical evo-
lutions using Temporal-Driven Constrained Clustering. In International Conference
on Tools with Artificial Intelligence, Proceedings of the Twenty-Forth, ICTAI 2012,
pages 610-617. IEEE, November 2012. Best Student Paper Award.

— Claudiu Musat, Julien Velcin, Stefan Trausan-Matu and Marian-Andrei Rizoiu. Im-
proving topic evaluation using conceptual knowledge. In International Joint Conference
on Artificial Intelligence, Proceedings of the Twenty-Second, volume 3 of IJCATI 2011,
pages 1866-1871. AAAI Press, 2011.

— Claudiu Musat, Julien Velcin, Marian-Andrei Rizoiu and Stefan Trausan-Matu.
Concept-based Topic Model Improvement. In International Symposium on Method-
ologies for Intelligent Systems, volume 369 of ISMIS 2011, pages 133-142. Springer,
June 2011.

National journals and proceedings of national conferences

— Marian-Andrei Rizoiu, Julien Velcin and Jean-Hugues Chauchat. Regrouper les don-
nées textuelles et nommer les groupes a ’aide des classes recouvrantes. In Extraction
et Gestion des Connaissances, (EGC 10) 10éme Conférence, volume E-19 of Revue des
Nouwwelles Technologies de I’Information, pages 561-572. Cépadués, January 2010.

— Claudiu Musat, Marian-Andrei Rizoiu and Stefan Trausan-Matu. An Intra and Inter-
Topic Evaluation and Cleansing Method. Romanian Journal of Human-Computer
Interaction, vol. 3, no. 2, pages 81-96, 2010.
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Book chapters

— Marian-Andrei Rizoiu and Julien Velcin. Topic Extraction for Ontology Learning. In
Wilson Wong, Wei Liu and Mohammed Bennamoun, editors, Ontology Learning and
Knowledge Discovery Using the Web: Challenges and Recent Advances, chapter 3,
pages 38-61. Hershey, PA: Information Science Reference, 2011.

Under review and submitted

— Marian-Andrei Rizoiu, Julien Velcin and Stéphane Lallich. Visual Vocabulary Con-
struction for Image Classification in a Weakly Supervised Context. International Jour-
nal of Artificial Intelligence Tools, 2012. Under review.

— Marian-Andrei Rizoiu, Julien Velcin and Stéphane Lallich. How to use Temporal-
Driven Constrained Clustering to detect typical evolutions. International Journal of
Artificial Intelligence Tools, 2013. Submitted.
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