

#DebateNight: The Role and Influence of **Socialbots** in the Democratic Process

Marian-Andrei Rizoiu

Timothy Graham

Rui Zhang

Yifei Zhang

Robert Ackland

Lexing Xie

ComputationalMedia @ANU:

http://cm.cecs.anu.edu.au

Two influencers: the 2016 U.S. Presidential elections

Jenna Abrams

@Jenn_Abrams

Politics is a circus of hypocrisy. I DO care. Any offers/ideas/questions? DM or email me jennnabrams@gmail.com (Yes, there are 3 Ns, this is important)

- **USA**
- & jennabrams.com
- iii Joined October 2014
- Born on October 02

6ok followers

136k followers

Common traits:

- Pro-republican;
- Highly influential, highly followed and retweeted;
- Opinion leaders;

• ...

Two influencers: the 2016 U.S. Presidential elections

Jenna Abrams

@Jenn_Abrams

Politics is a circus of hypocrisy. I DO care. Any offers/ideas/questions? DM or email me jennnabrams@gmail.com (Yes, there are 3 Ns, this is important)

- **USA**
- & jennabrams.com
- iii Joined October 2014
- Born on October 02

6ok followers

136k followers

Common traits:

- Pro-republican;
- Highly influential, highly followed and retweeted;
- Opinion leaders;

•

Russian-controlled bots operated by the Internet Research Agency in St. Petersburg

[Forbes, The Guardian, CNN + 50 more]

The political influence of socialbots

SocialBots:

"Software processes that are programmed to appear to be human-generated within the context of social networking sites such as Facebook and Twitter" (Gehl and Bakardjieva 2016, p.2)

Immediate and long term research questions:

- are socialbots influential in the political discourse?
- did they have political partisanship?
- (long term) were they instrumental for the results of the elections?

#DebateNight dataset

- First U.S. Presidential Debate (26 sept 2016, 8.45pm to 10.45pm EDT)
- Twitter Firehose

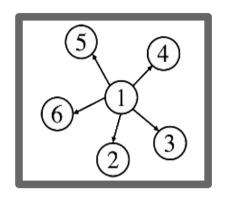
Dataset stats:

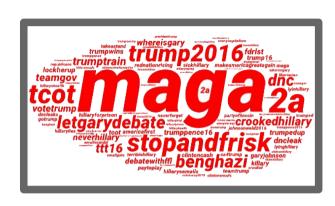
- length: 90 minutes
- #tweets: **6.5M**
- #users: 1.45M

Hashtags:

#DebateNight
#Debates2016
#election2016
#HillaryClinton
#Debates,
#Hillary2016
#DonaldTrump
#Trump2016

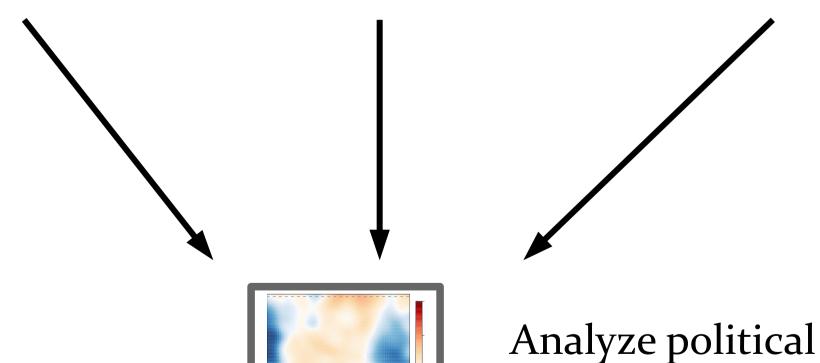
Presentation outline



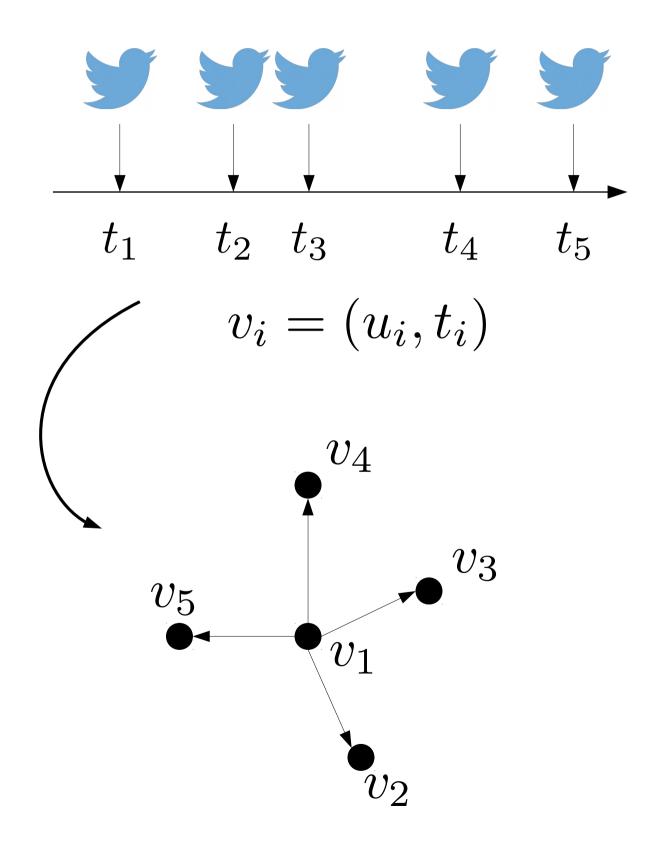


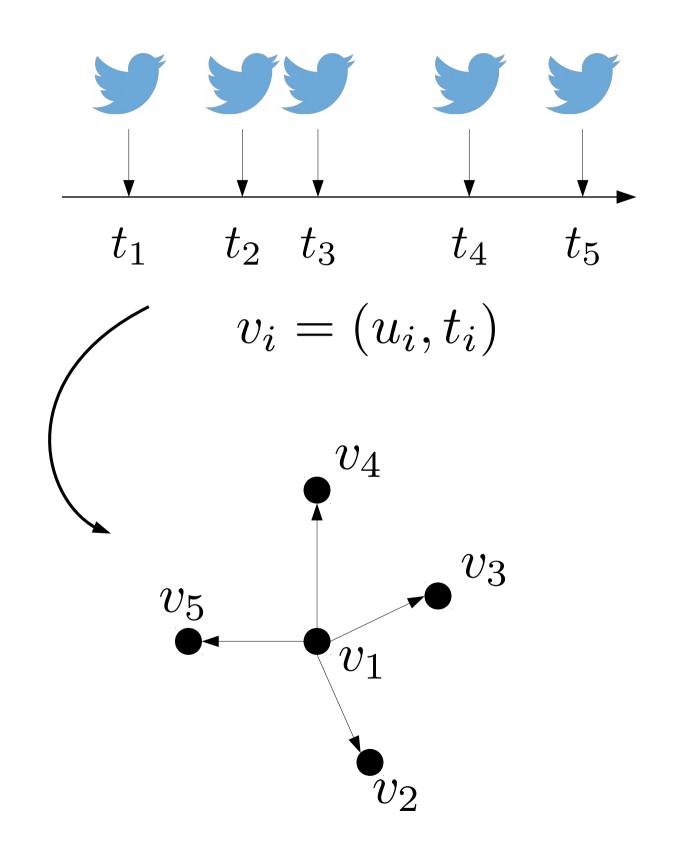
Political partisanship

User botness

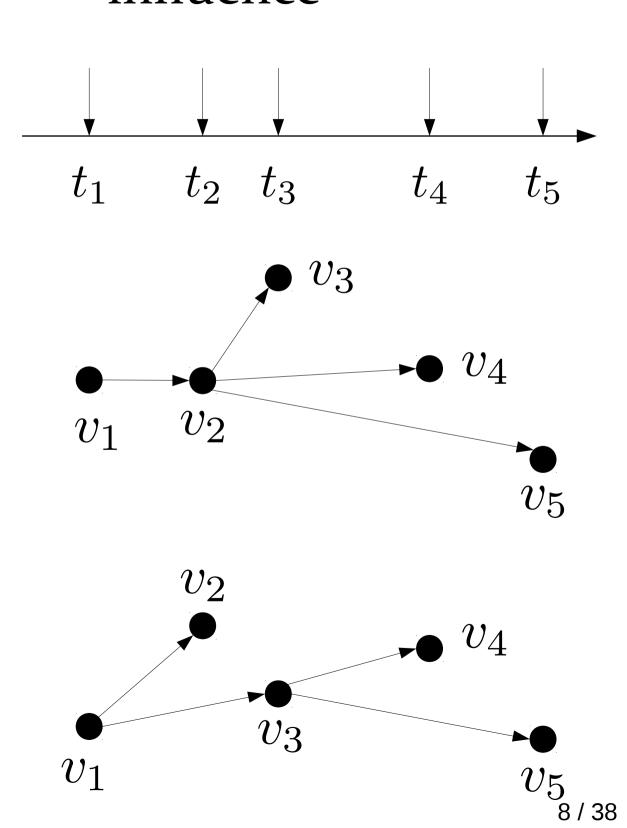


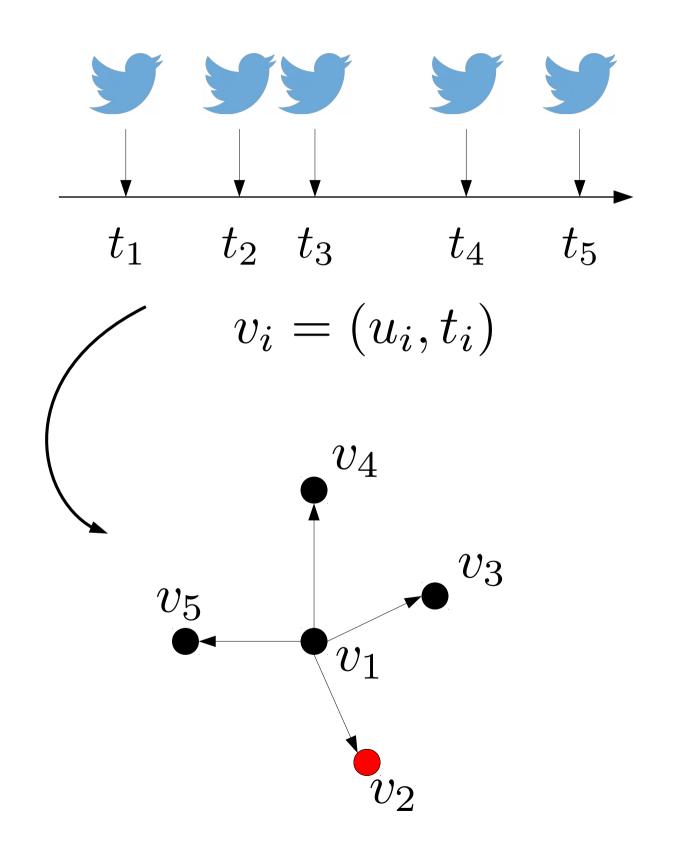
Analyze political behavior of bots



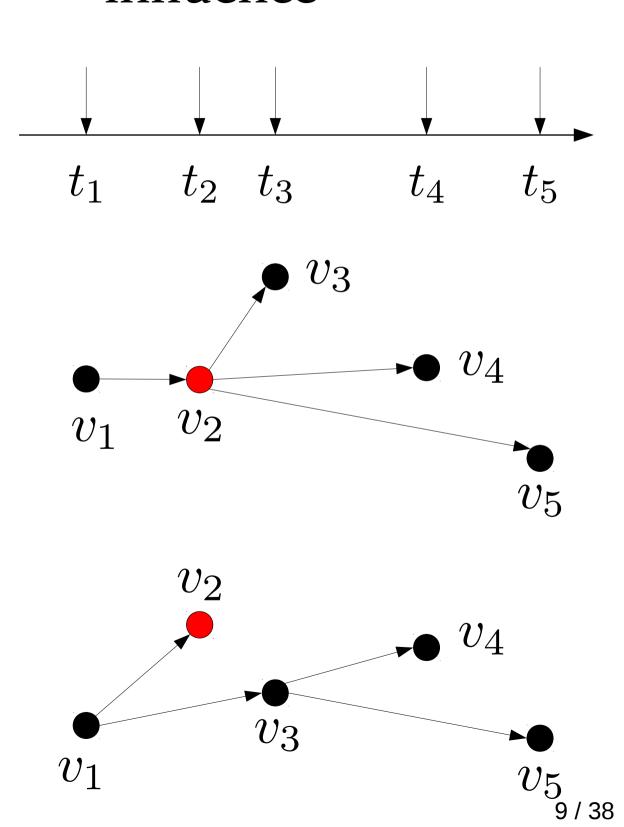


Diffusion trees and influence





Diffusion trees and influence



$$p_{ij} = \frac{m_i e^{-r(t_j - t_i)}}{\sum_{k=1}^{j-1} m_k e^{-r(t_j - t_k)}}$$

branching probability

$$p_{ij} = \frac{m_i \mathbf{e}^{-\mathbf{r}(\mathbf{t_j} - \mathbf{t_i})}}{\sum_{k=1}^{j-1} m_k e^{-r(t_j - t_k)}}$$

branching probability

- users retweet fresh content
[Hawkes 1971]
[Wu and Huberman 2007]

#followers of u_i $p_{ij} = \frac{\mathbf{m_i} e^{-\mathbf{r}(\mathbf{t_j} - \mathbf{t_i})}}{\sum_{k=1}^{j-1} m_k e^{-r(t_j - t_k)}}$

branching probability

- users retweet *fresh content*[Hawkes 1971]
 [Wu and Huberman 2007]
- preferential attachment [Barabási 2005]

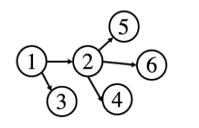
#followers of u_i $p_{ij} = \frac{\mathbf{m_i} e^{-\mathbf{r}(\mathbf{t_j} - \mathbf{t_i})}}{\sum_{k=1}^{j-1} m_k e^{-r(t_j - t_k)}}$

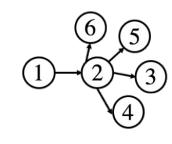
branching probability

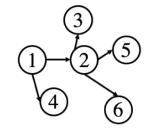
- users retweet *fresh content*[Hawkes 1971]
 [Wu and Huberman 2007]
- preferential attachment [Barabási 2005]

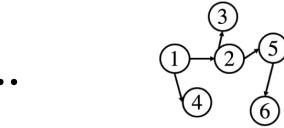
Tweet influence: the expected number of retweets, averaged over all possible trees.

But ... (n-1)! trees 10^{156} trees for 100 tweets



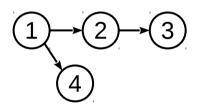




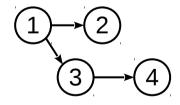


Tractable influence computation

Pair-wise influence score m_{ij}



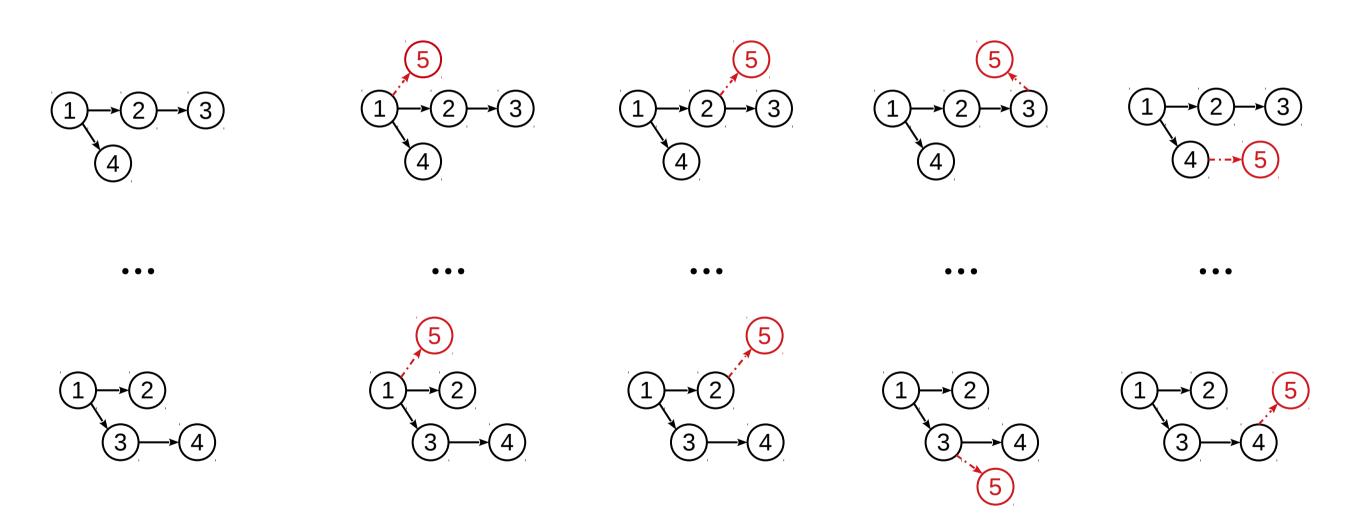
• • •



Tractable influence computation

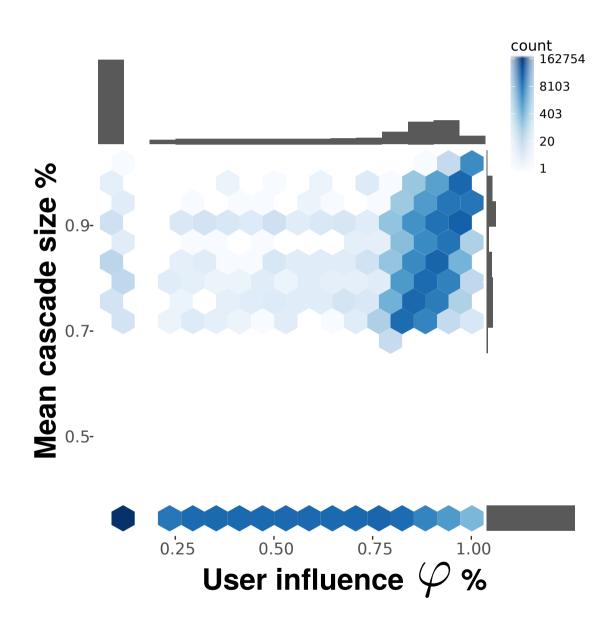
Pair-wise influence score m_{ij}

$$m_{15} = m_{11}p_{15} + m_{12}p_{25} + m_{13}p_{35} + m_{14}p_{45}$$



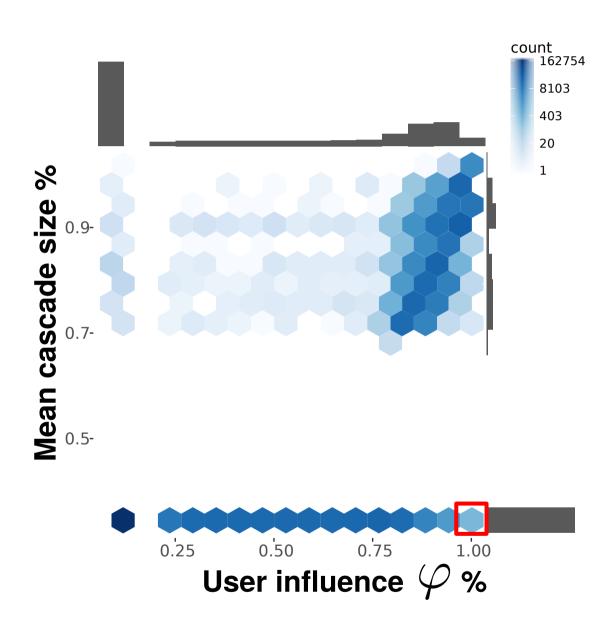
Recursive algorithm $O(n^3)$

Influence vs. cascade size



Density plot for 653K users (45% users start a cascade)

Influence vs. cascade size



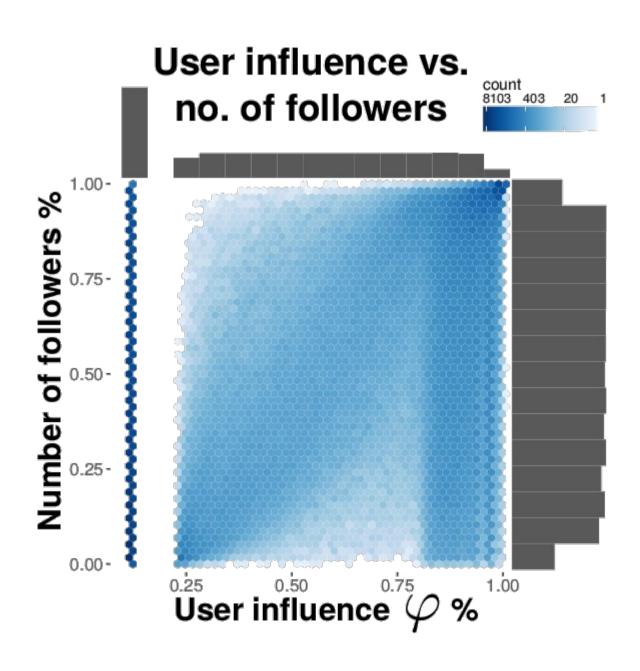
Density plot for 653K users (45% users start a cascade)

actor and filmmaker
10.8 million followers

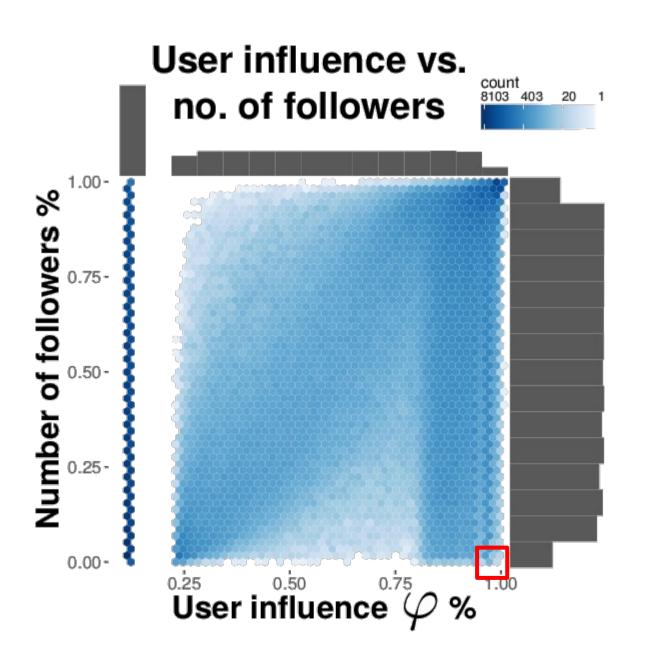
2.1 million followers

comedian

Influence vs. number of followers



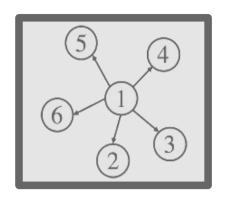
Influence vs. number of followers



2 followers
Initiated a
big cascade

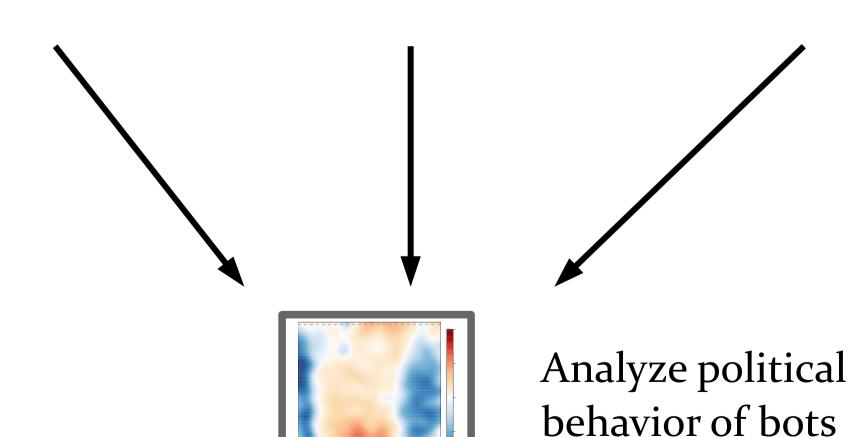
now suspended 1 follower Initiated a big cascade

Presentation outline



Political partisanship

User botness



Political polarization (1)

Protocol:

- Top 1000 most frequent hashtags
- Manually labeled as *clearly partisan* pro-democrat or pro-republican

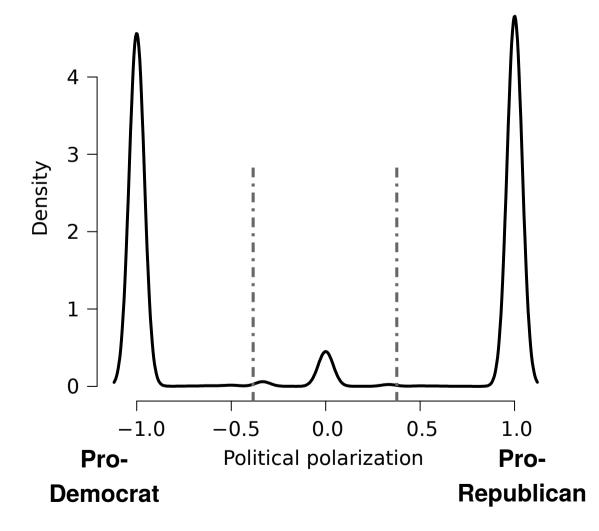
Partisanship stats:

- pro-Democrat hashtags: 93
- pro-Republican hashtags: 86
- partisan tweets: 65K
- partisan users: 47K

Political polarization (2)

For each user i:

- dem_i #democrat hashtags
- rep_i #republican hashtags

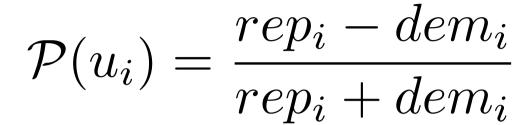


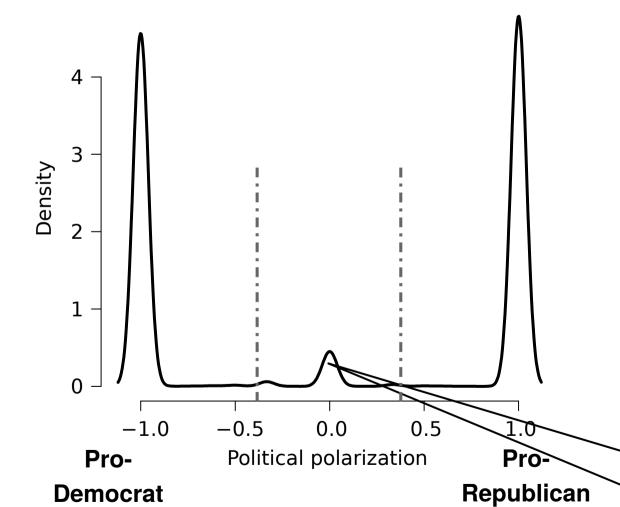
$$\mathcal{P}(u_i) = \frac{rep_i - dem_i}{rep_i + dem_i}$$

Political polarization (2)

For each user i:

- dem; #democrat hashtags
- rep_i #republican hashtags





Let's Get READY TO RUMBLE AND TELL LIES.

#debatenight #debates #Debates2016 #cnn #nevertrump #neverhillary #Obama

Botness score and bot detection

Bot detection:

- BotOrNot [Davis et al, WWW '16] [Varol et al, ICWSM'17]
 - RandomForest classifier
 - more than 1000 features from metadata
 - o very likely human
 - 1 very likely bot
 - 94.5% precision

Botometer

@Botometer

Online tool to classify Twitter accounts as human or bot. Formerly known as BotOrNot, part of the OSoMe project at Indiana University

- O Bloomington, IN
- S botometer.juni.ju.edu
- S-a alăturat în aprilie 2014

Separating bots from humans

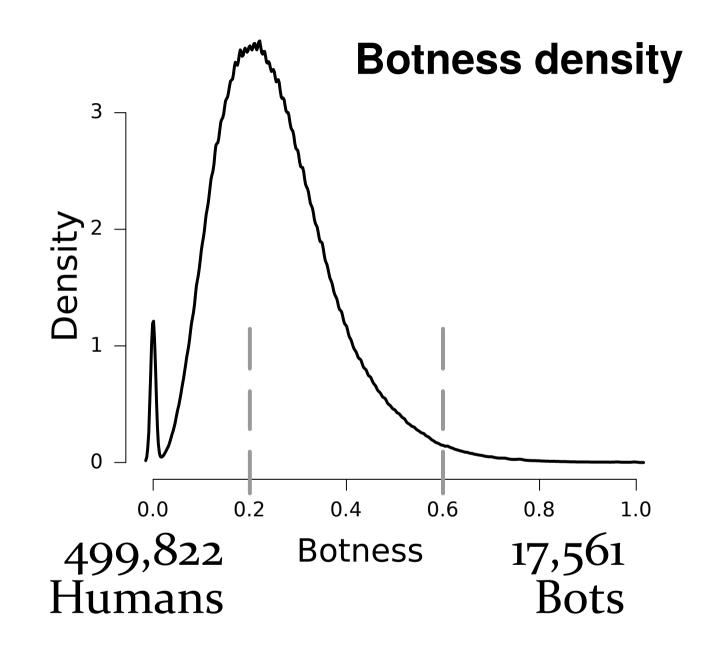
Three populations

Population	Effective
All	1,451,388
Protected	45,316
Suspended	10,162

Separating bots from humans

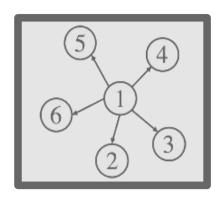
Three populations

Population	Effective
All	1,451,388
Protected	45,316
Suspended	10,162

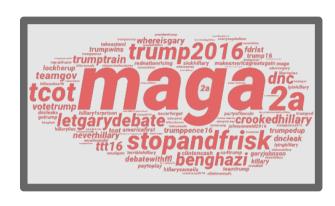


[Varol et al, ICWSM'17] use a threshold of 0.5

Presentation outline

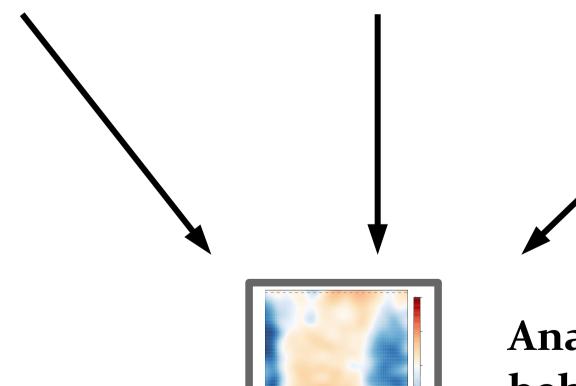


User influence



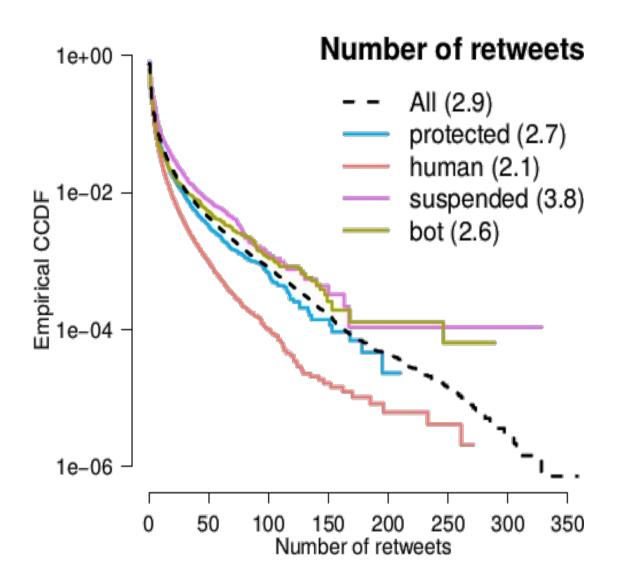
Political partisanship

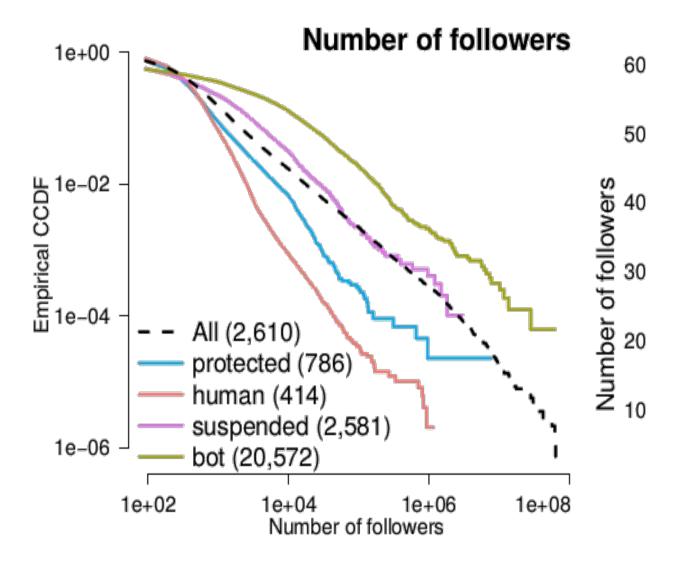
User botness



Analyze political behavior of bots

Activity profiling

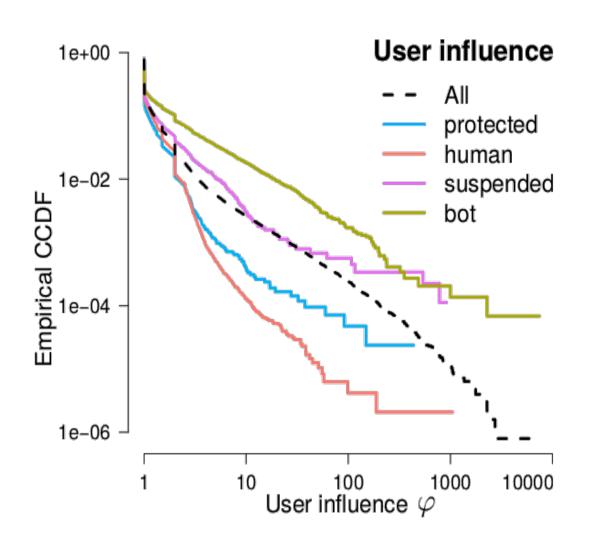


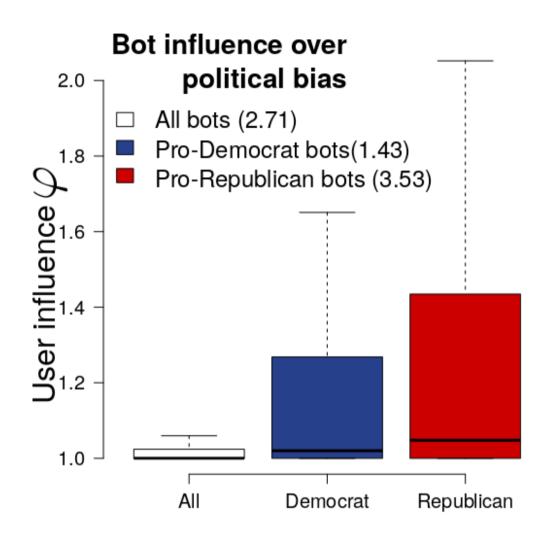


Bots and **Suspended** are more active than **Humans** and **Protected**

Some **Bots** are highly followed, while most are ignored

User influence

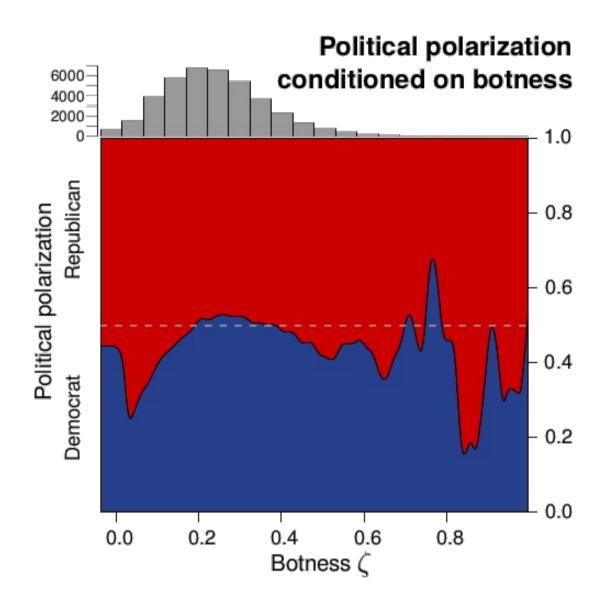


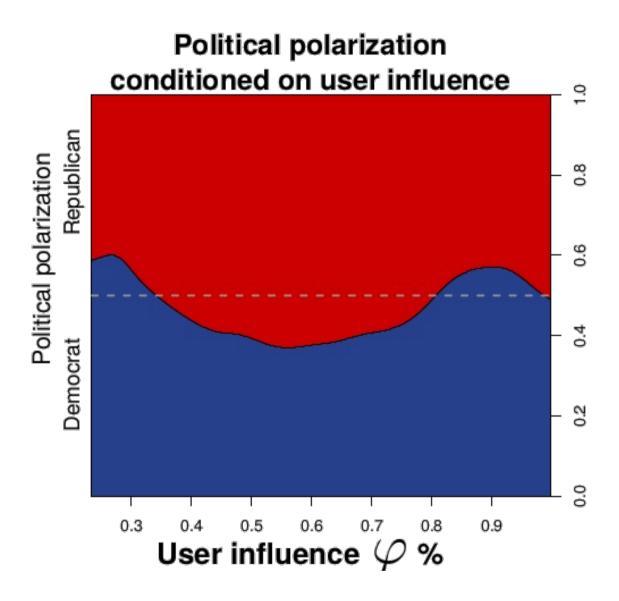


The average **Bot** has 2.5 times more influence than the average **Human**

The average pro-Republican **Bot** is twice as influential as the average pro-Democrat **Bot**

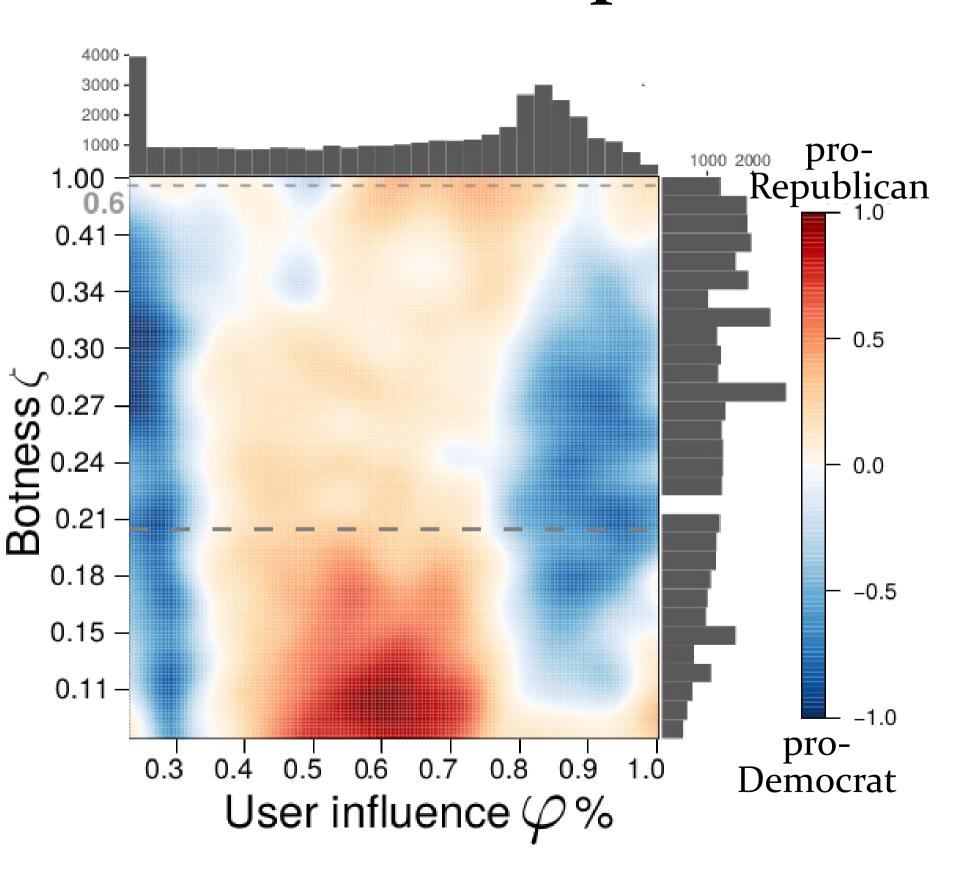
Political partisanship





Bots are more likely to be pro-Republican (than pro-Democrat) Very highly influential users are more likely to be pro-Democrat

Polarization map

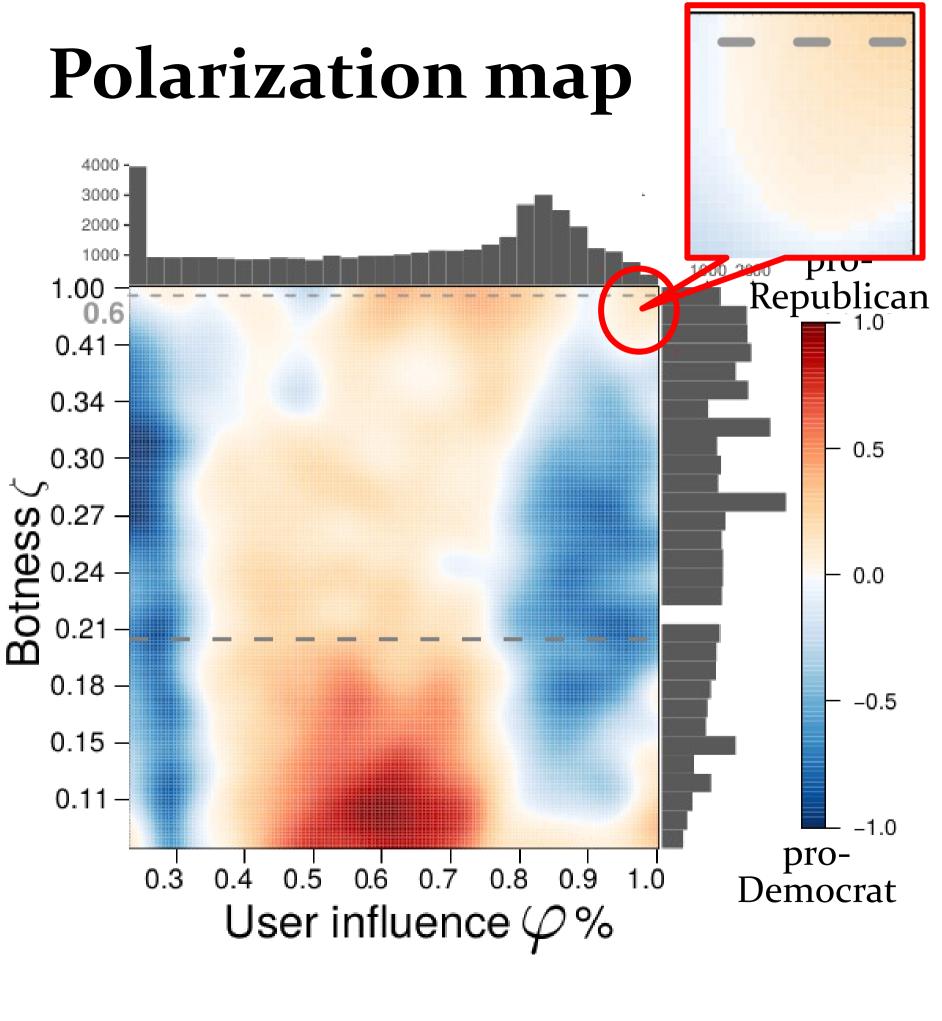


Polarization map



Very highly influential users are pro-Democrat

(D: 7201, R: 5736)

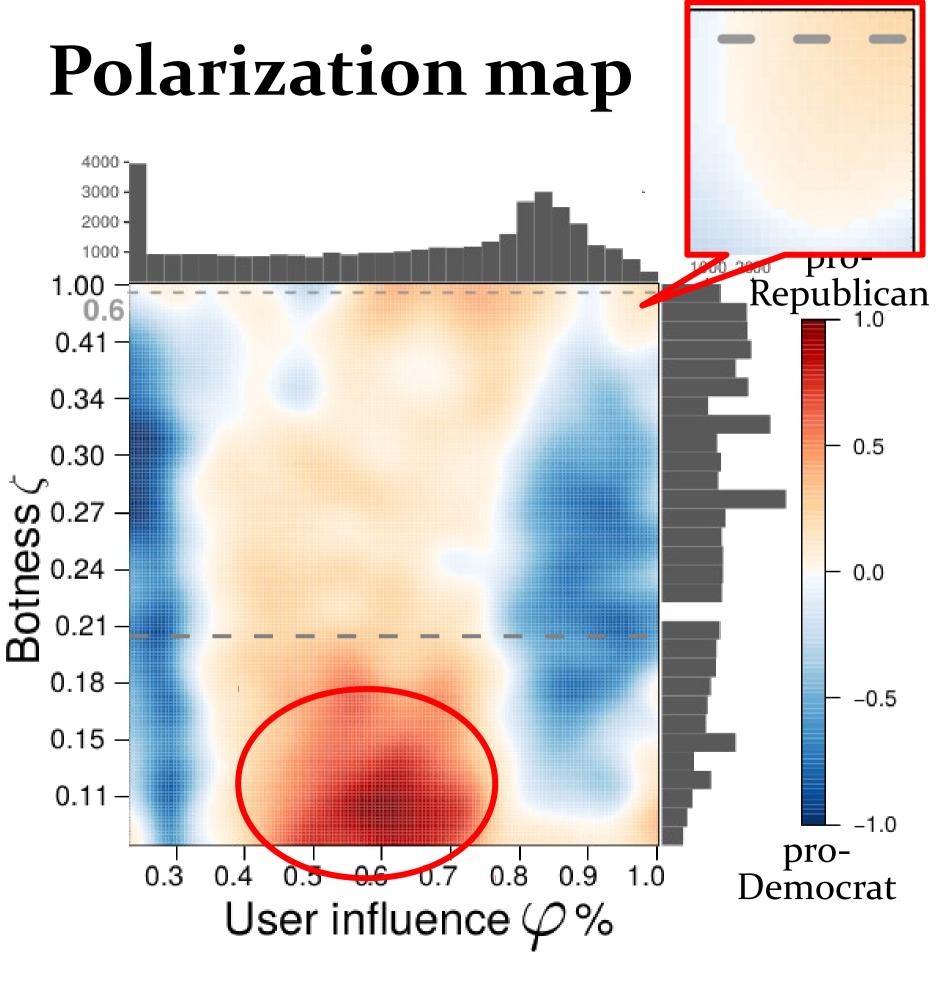


Very highly influential users are pro-Democrat

(D: 7201, R: 5736)

Highly influential **Bots** are pro-Republican

(D: 24, R: 45)



Very highly influential users are pro-Democrat

(D: 7201, R: 5736)

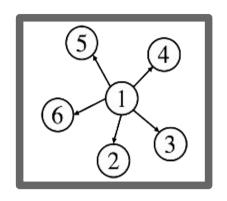
Highly influential **Bots** are pro-Republican

(D: 24, R: 45)

Mid-influential humans are pro-Republican

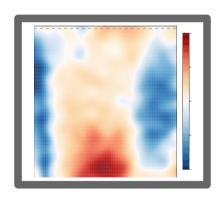
(D: 1530, R: 3311)

Summary



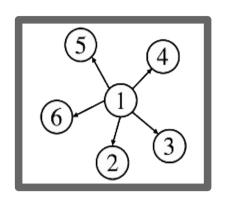
A scalable algorithm to estimate user influence from latent network structures

Three measures to quantify the influence, the political partisanship and botness of Twitter users



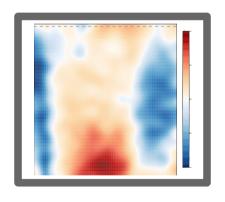
A detailed analysis of the role and influence of socialbots during the first U.S. Presidential debate.

Summary



A scalable algorithm to estimate user influence from latent network structures

Three measures to quantify the influence, the political partisanship and botness of Twitter users



A detailed analysis of the role and influence of socialbots during the first U.S. Presidential debate.

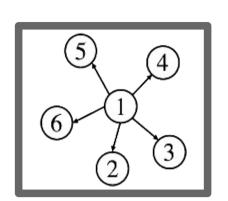
Limitations:

Organizational accounts appear as **Bots**; binary partisanship characterization (e.g. independent voters)

Were Bots instrumental for the results of the elections?

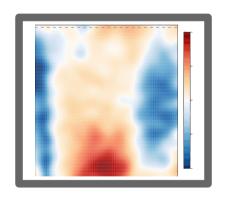
#DebateNight: The Role and Influence of **Socialbots** in the Democratic Process

https://github.com/computationalmedia/cascade-influence



A scalable algorithm to estimate user influence from latent network structures

Three measures to quantify the influence, the political partisanship and botness of Twitter users



A detailed analysis of the role and influence of socialbots during the first U.S. Presidential debate.

Limitations:

Organizational accounts appear as **Bots**; binary partisanship characterization (e.g. independent voters)

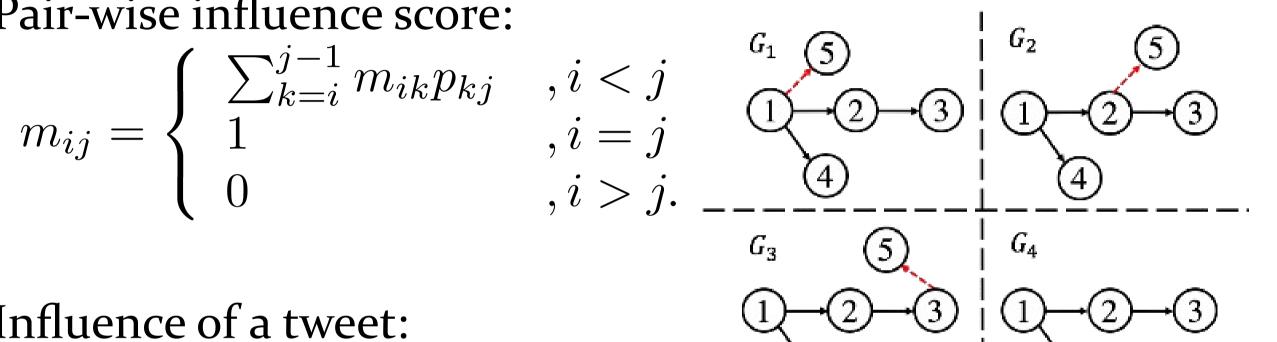
Were Bots instrumental for the results of the elections?

Tractable influence computation

Pair-wise influence score:

$$m_{ij} = \begin{cases} \sum_{k=i}^{j-1} m_{ik} p_{kj} \\ 1 \\ 0 \end{cases}$$

$$, i < j
 , i = j
 , i > j.$$



Influence of a tweet:

$$\varphi(v_i) = \sum_{j=1}^n m_{ij}.$$

Influence of a user:

$$\varphi(u) = \frac{\sum_{v \in \mathcal{T}(u)} \varphi(v)}{|\mathcal{T}(u)|}, \mathcal{T}(u) = \{v | u_v = u\}$$