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Common traits:

● Pro-replblican;
● Highly inflential, 
highly followed and 
retweeted;
● Opinion leaders;
● ...

Two infuencers: the 2016 U.S. Presidential elections

136k followers60k followers
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Common traits:

● Pro-replblican;
● Highly inflential, 
highly followed and 
retweeted;
● Opinion leaders;
● ...

Russian-controlled bots 
operated by the Internet 
Research Agency in St. 
Petersblrg

Two infuencers: the 2016 U.S. Presidential elections

136k followers60k followers [Forbes, The Guardian, CNN 
+ 50 more]
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The political infuence of socialbots

●  did they have political partisanship?

“Software processes that are programmed to appear to be 
hlman-generated within the context of social networking 
sites slch as Facebook and Twitter” 

(Gehl and Bakardjieva 2016, p.2)

SocialBots:

●  are socialbots inflential in the political discolrse?

Immediate and long term research questions:

SocialBots:

●  (long term) were they instrlmental for the resllts of 
the elections?
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#DebateNight dataset

Dataset stats:
● length: 90 minutes
● #tweets: 6.5M 
● #lsers: 1.45M

● First U.S. Presidential Debate  
(26 sept 2016, 8.45pm to 10.45pm EDT)

● Twitter Firehose

#DebateNight
#Debates2016
#election2016
#HillaryClinton
#Debates,
#Hillary2016
#DonaldTrump 
#Trump2016

Hashtags:
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Presentation outline

User infuence User botness

Analyze political 

behavior of bots

Political partisanship
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Retweet infuence (1)
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Retweet infuence (1)
Difflsion trees and 
inflence
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Retweet infuence (1)
Difflsion trees and 
inflence
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Retweet infuence (2)

branching probability
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- lsers retweet fresh content
[Hawkes 1971]
[Wu and Huberman 2007]

Retweet infuence (2)

branching probability
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- lsers retweet fresh content
[Hawkes 1971]
[Wu and Huberman 2007]

- preferential attachment
[Barabási 2005]

#followers of

Retweet infuence (2)

branching probability
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- lsers retweet fresh content
[Hawkes 1971]
[Wu and Huberman 2007]

- preferential attachment
[Barabási 2005]

#followers of

Retweet infuence (2)

Tweet infuence: the expected nlmber of retweets, averaged 
over all possible trees.

But ... trees          trees for 100 tweets

...

branching probability
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Tractable infuence computation

Pair-wise inflence score
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Tractable infuence computation

Pair-wise inflence score

Reclrsive algorithm
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behavior of bots

Political partisanship
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Polarization and engagement (1)

Protocol:

●  Top 1000 most freqlent hashtags
●  Manlally labeled as clearly 

partisan pro-democrat or pro-
replblican

Partisanship stats:

● pro-Democrat hashtags: 93
● pro-Replblican hashtags: 86 
● partisan tweets: 65K
● partisan lsers: 47K 
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Polarization and engagement (2)

For each user i:

●  dem
i
 – #democrat hashtags

●  rep
i
 – #replblican hashtags
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Polarization and engagement (2)

For each user i:

●  dem
i
 – #democrat hashtags

●  rep
i
 – #replblican hashtags

Let's Get READY TO RUMBLE AND TELL LIES. 

#debatenight #debates #Debates2016 #cnn 
#nevertrump #neverhillary #Obama
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Botness score and bot detection

[Davis et al, WWW ‘16]

Bot detection:
●  BotOrNot

-  RandomForest classifer
-  more than 1000 featlres from 
metadata

  0 – very likely hlman 
 1 – very likely bot

- 94.5% precision

[Varol et al, ICWSM‘17]
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Separating bots from humans

Three populations

Population Effective

All 1,451,388

Protected 45,316

Slspended 10,162
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Separating bots from humans

Three populations

Population Effective

All 1,451,388

Protected 45,316

Slspended 10,162 499,822
Hlmans

17,561
Bots

[Varol et al, ICWSM‘17] lse a threshold of 0.5
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User inflence User botness

Analyze political 

behavior of bots

Political partisanship
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Activity profling

Bots and Suspended are 
more active than Humans 

and Protected

Some Bots are highly 
followed, while most 

are ignored
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User infuence

The average Bot has 2.5 
times more inflence 

than the average Human

The average pro-Replblican 
Bot is twice as inflential as 

the average pro-Democrat Bot
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Political partisanship

Bots are more likely to 
be pro-Replblican

(than pro-Democrat)

Very highly inflential 
lsers are more likely to 

be pro-Democrat
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Polarization map
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Replblican
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Polarization map

Very highly 
inflential lsers are 
pro-Democrat
(D: 7201, R: 5736)

pro-
Democrat

pro-
Replblican
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Polarization map

Very highly 
inflential lsers are 
pro-Democrat
(D: 7201, R: 5736)

Highly inflential 
Bots are pro-
Replblican
(D: 24, R: 45)
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Polarization map

Very highly 
inflential lsers are 
pro-Democrat
(D: 7201, R: 5736)

Mid-inflential 
hlmans are pro-
Replblican
(D: 1530, R: 3311)

Highly inflential 
Bots are pro-
Replblican
(D: 24, R: 45)

pro-
Democrat

pro-
Replblican
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Summary

Three measlres to qlantify the inflence, the 
political partisanship and botness of Twitter lsers

A detailed analysis of the role and inflence of 
socialbots dlring the frst U.S. Presidential debate.

A scalable algorithm to estimate lser inflence from 
latent network strlctlres
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Summary

Three measlres to qlantify the inflence, the 
political partisanship and botness of Twitter lsers

A detailed analysis of the role and inflence of 
socialbots dlring the frst U.S. Presidential debate.

A scalable algorithm to estimate lser inflence from 
latent network strlctlres

Limitations:
Organizational accolnts appear as Bots; 
binary partisanship characterization 
(e.g. independent voters)

Were Bots instrumental for the results of the elections?
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Limitations:
Organizational accolnts appear as Bots; 
binary partisanship characterization 
(e.g. independent voters)

Three measlres to qlantify the inflence, the 
political partisanship and botness of Twitter lsers

A detailed analysis of the role and inflence of 
socialbots dlring the frst U.S. Presidential debate.

A scalable algorithm to estimate lser inflence from 
latent network strlctlres

https://github.com/computationalmedia/cascade-infuence

Were Bots instrumental for the results of the elections?

#DebateNight: The Role and Inflence of 
Socialbots in the Democratic Process 
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Tractable infuence computation

Pair-wise inflence score:

Inflence of a tweet:

Inflence of a lser:
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Supp: Infuence vs. cascade size
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Supp: Infuence vs. cascade size

actor and 
flmmaker
10.8 million
followers

comedian

2.1 million
followers
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(45% lsers start a cascade)
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Supp: Infuence vs. number of followers
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2 followers

Initiated a 
big cascade

1 follower

Initiated a 
big cascade

now 
slspended

Supp: Infuence vs. number of followers
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