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processes and SIR infectious models

Linking SIR and the Hawkes processes

Computing the distribution of diffusion size




The Hawkes Process [Hawkes ‘71]
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The SIR epidemic model
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The SIR epidemic model
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SIR as a bivariate point process
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A finite population Hawkes model

Goal: Introduce population size in Hawkes

HawkesN: modulate the event intensity by the size of the
available population:
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Example: a HawkesN diffusion
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Linking SIR and Hawkes




Linking SIR and Hawkes

HawkesN (u, ,0)
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From SIR to HawkesN
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From SIR to HawkesN
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From SIR to HawkesN
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Aggregated over 10,000 recovery realizations




From SIR to HawkesN

Infection
events

The event intensity of the equivalent HawkesN
is the expected new infections intensity




Presentation outline

Prerequisites: Hawkes point processes and
SIR infectious models

Linking SIR and the Hawkes processes

Computing the distribution of diffusion size




Hawkes and HawkesN in prediction

e 100 Oobserved events;
o predict the final size of the cascade.
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Distribution of total size

using an SIR Markov chain technique
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Distribution of total size

using an SIR Markov chain technique

A
» 2-D space of (S, I) Nt

e From (S(t) = s, I(t) = i):
e New infection — (s-1, i+1)

e New recovery— (s, i-1) T

p({s = Li+ 1}[{s,1})
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Distribution of total size

using an SIR Markov chain technique

A
» 2-D space of (S, I) Nt

e From (S(t) = s, I(t) = i):

e New infection = (s-1, i+1)

e New recovery— (s, i-1) T
p({s — L,i +1}[{s,4})

e States (s, 0) are absorbing
p({s,i — 1}|{s,})

e Probability of total size is
the probability of N-s

%

space of / S N

absorbing states




Example: a tweet cascade
B screencreer.

The New York Times reports Leonard Nimoy,
‘Star Trek"s beloved Mr. Spock, has died.
nytimes.com/2015/02/27/art ...
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Explanation for the unpredictability of online popularity




HawkesN generalization
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HawkesN generalizes
better than Hawkes on

real-life cascades . _
" 04 :
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HawkesN: holdout negative
Caveat: log—likelihood (per event)

Estimating N from data is
unreliable.
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Summary

HawkesN: an extension of Hawkes accounting
for a finite population

Connecting SIR epidemic models and HawkesN
through the expected new infection intensity

A Markov Chain tool for computing the
distribution of final size adapted to HawkesN

Limitations & Fixed population, N estimated from each cascade,
future work: other kernels in HawkesN.




Thank youl!

HawkesN: an extension of Hawkes accounting
for a finite population

Connecting SIR epidemic models and HawkesN
through the expected new infection intensity

A Markov Chain tool for computing the
distribution of final size adapted to HawkesN

Limitations & Fixed population, N estimated from each cascade,
future work: other kernels in HawkesN.

Data & code: https://github.com/computationalmedia/sir-hawkes



https://github.com/computationalmedia/sir-hawkes

Supp: Estimating /(0) in HawkesN

Issue:

Recovery events are unobserved in HawkesN — the number
of infected is unknown.

Solution:

Estimate its expecte(f value

E,z[1(0)] = E,r

when t1,%o,...
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[
- E G—W(tz—tﬁ)
g=1

, U1 are the [ observed events.




Supp: (under) Estimating N from data
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Supp: Estimating N from data
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