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Summary: 

1. Problem
1.1 Data
1.2 Goal

3. Experiments
  3.1 Qualitative evaluation
  3.2 Quantitative evaluation

2. Proposed solutions:
  2.1 A clustering solution
  2.2 Temporal-Aware Dissimilarity Measure
  2.3 Contiguity Penalty Measure
  2.4 TDCK-Means algorithm
  2.5 Evaluation measures

 4. Conclusion and perspectives
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Partition evaluation 
measures 

- descriptive coherence of clusters; 
- temporal coherence of clusters;

- continuous segmentation of   
observations belonging to an entity.

variance MDvar
Tvar

Shannon Entropy

Proposal: Correct the Shannon entropy to penalize changes

Problem Proposed Solutions Experiments Conclusion

A – B – A – B ???
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Conclusion:

Problem Proposed Solutions Experiments Conclusion

- Studied the detection of typical evolutions starting from a   
  collection of observations corresponding to entities;

- Proposed a new Temporal-Aware Measure;

- Proposed a new Contiguity Penalty Function;

- Proposed a new algorithm for detecting evolutions:  
TDCK-Means;

- Other applications: political careers, life trajectories etc. 
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Current work: Apply the TDCK-Means to detect user social roles
(in collaboration with Technicolor laboratories, Rennes)

Regroup user activity into temporal contiguous clusters
Interpret transitions between clusters as user roles. 



   

 M-A. Rizoiu, J. Velcin and S. Lallich Structuring Typical Evolutions using Temporal-Driven Constrained Clustering 15

Problem Proposed Solutions Experiments Conclusion

Current work: Infer graph structure for clusters during the 
clustering
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Current work: Infer graph structure for clusters during the 
clustering

(Research group Julien V., Stéphane B., Stéphane L. and Rizoiu M-A.)

Modify the objective function to take into account a graph structure

Temporal distance
between clusters

Intersection 
of clusters

Estimate the adjacency matrix during 
the Objective Function optimization

A=(
a11 a12 ... a1n

a21 a22 ... a2n

. . . .

. . . .

. . . .
an1 a n2 ... ann

)aij – link between clusters i and j
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Enforce the link between two clusters when:

- the two clusters are close in time;
- the two clusters share multiple entities.
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Enforce the link between two clusters when:

- the two clusters are close in time;
- the two clusters share multiple entities.

Re-calculate centroids:

- gradient descent;
- Lagrange multiplicators.
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Thank you!

Questions?

Problem Proposed Solutions Experiments Conclusion
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Quantitative evaluation

5 algorithms: 3 measures:

- K-Means [MacQueen '67];
- tcK-Means [Lin and Hauptmann '10] 

- Temporal-Driven K-Means;
      (uses Temporal-Aware Measure)
- Constrained K-Means;

 (uses Contiguity Penalty Function)

- TDCK-Means;
(combines the two above)

- MDvar
- Tvar
- ShaP

Problem Proposed Solutions Experiments Conclusion
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